Clusters in the Northern Hemisphere wintertime, 10-day low-pass-filtered 500-hPa height field are identified using the method of self-organizing maps (SOMs). Results are based on 1) a 57-winter record of ERA and 2) a 93-winter record of the NOAA Twentieth-Century Reanalysis (20CR). The clusters derived from SOMs appear to be more robust and more linearly independent than their counterparts derived from Ward’s method, and clusters with comparable numbers of member days are more distinctive in terms of the standardized Euclidean distances of their centroids from the centroid of the dataset. The reproducible SOM clusters in the hemispheric domain are 1) the negative polarity of the North Atlantic Oscillation (NAO), 2) a pattern suggestive of Alaska blocking with a downstream wave train extending over North America and the North Atlantic, 3) an enhancement of the climatological-mean stationary wave pattern in the Western Hemisphere that projects positively upon the Pacific–North America (PNA) pattern, and 4) a pattern that projects upon the negative polarity of the PNA pattern. The first three patterns have important impacts on the wintertime climate in North America and Europe. In particular, they are helpful in interpreting prevailing flow patterns during the exceptional winters of 1930–31, 2009–10, and 2013–14. Because of the very limited number of independent samples in a single winter, the number of days per winter in which the circulation resides within individual clusters varies erratically from winter to winter, rendering attribution difficult.
Primary biological aerosol particles (PBAP) such as pollen, fungal spores, bacteria, and viruses represent a major subset of particulate matter for both coarse and fine aerosols. Although PBAP affect climate and human health, there still remains a large uncertainty regarding their sources and characteristics, especially in urban atmospheres. Here we combined online fluorescent biological aerosol particle measurements and offline fluorescent and biomarker analysis in winter in Beijing, a city suffering from severe air pollution. Our results show that the abundance of fluorescent biological particles was higher than that of many other natural environments. Bioaerosol loadings were greatly enhanced during mealtime, indicating local emissions of bioaerosols from human activities. The contributions of fungal spores to total organic carbon (OC) from fluorescent bioaerosol analyses were estimated to be around 10% both in clean and polluted periods. This study highlights the importance of human activities to emit bioaerosols into the atmosphere and the potential uncertainties of modeling bioaerosol effects in climate systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.