Two dimensional graphene oxide (GO) sheets with high surface area and excellent mechanical properties are introduced into a solid polyethylene oxide/lithium salt electrolyte.
This manuscript introduces a one-pot fabrication procedure for the preparation of supramolecular hybrid hydrogels from low-cost commercially available natural products through a "green" strategy. In particular, the hybrid hydrogels, which are developed with Fmoc-Glu-OMe, silver nanoparticles and chitosan, exhibit outstanding antibacterial properties and can be regarded as excellent mouldable wound healing biomaterials.
Poor wettability and acoustic mismatch between diamond and copper cause low interface thermal conductance and thus low thermal conductivity in their composites. In this work, beyond widely used strategies such as surface metallization and matrix alloying, in-situ grown graphene is introduced as a highly effective interlayer. The positive role of graphene on improving wetting between diamond and copper was supported by the increase of relative density, fractured surface morphology and interface microstructure. Thanks to the improved wetting and mitigated acoustic mismatch between diamond and copper, the interfacial thermal conductance is increased by ~3.7 times in the diamond/graphene/copper composite as indicated by differential effective medium calculation. Such a positive role of graphene 2 interlayer also agrees with the results from the time-domain thermoreflectance measurements.As a result, the thermal conductivity of the diamond/graphene/copper composite is 61% higher than that of the counterpart without graphene interlayer. This study provides a new approach for interface modification by 2D materials for a high TC of diamond/copper composite beyond surface metallization and matrix alloying.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.