We aimed to develop and validate an objective and easy-to-use model for identifying patients with spontaneous intracerebral hemorrhage (ICH) who have a poor 90-day prognosis. This three-center retrospective study included a large cohort of 1,122 patients with ICH who presented within 6 h of symptom onset [training cohort, n = 835; internal validation cohort, n = 201; external validation cohort (center 2 and 3), n = 86]. We collected the patients’ baseline clinical, radiological, and laboratory data as well as the 90-day functional outcomes. Independent risk factors for prognosis were identified through univariate analysis and multivariate logistic regression analysis. A nomogram was developed to visualize the model results while a calibration curve was used to verify whether the predictive performance was satisfactorily consistent with the ideal curve. Finally, we used decision curves to assess the clinical utility of the model. At 90 days, 714 (63.6%) patients had a poor prognosis. Factors associated with prognosis included age, midline shift, intraventricular hemorrhage (IVH), subarachnoid hemorrhage (SAH), hypodensities, ICH volume, perihematomal edema (PHE) volume, temperature, systolic blood pressure, Glasgow Coma Scale (GCS) score, white blood cell (WBC), neutrophil, and neutrophil-lymphocyte ratio (NLR) (p < 0.05). Moreover, age, ICH volume, and GCS were identified as independent risk factors for prognosis. For identifying patients with poor prognosis, the model showed an area under the receiver operating characteristic curve of 0.874, 0.822, and 0.868 in the training cohort, internal validation, and external validation cohorts, respectively. The calibration curve revealed that the nomogram showed satisfactory calibration in the training and validation cohorts. Decision curve analysis showed the clinical utility of the nomogram. Taken together, the nomogram developed in this study could facilitate the individualized outcome prediction in patients with ICH.
Purpose Early evaluation of the efficacy of first-line chemotherapy combined with bevacizumab in patients with colorectal cancer liver metastasis (CRLM) remains challenging. This study used 2-month post-chemotherapy spectral computed tomography (CT) to predict the overall survival (OS) and response of CRLM patients with bevacizumab-containing therapy. Method This retrospective analysis was performed in 104 patients with pathologically confirmed CRLM between April 2017 and October 2021. Patients were treated with 5-fluorouracil, leucovorin, oxaliplatin or irinotecan with bevacizumab. Portal venous phase spectral CT was performed on the target liver lesion within 2 months of commencing chemotherapy to demonstrate the iodine concentration (IoD) of the target liver lesion. The patients were classified as responders (R +) or non-responders (R −) according to the Response Evaluation Criteria in Solid Tumors (RECIST) v1.1 at 6 months. Multivariate analysis was performed to determine the relationships of the spectral CT parameters, tumor markers, morphology of target lesions with OS and response. The differences in portal venous phase spectral CT parameters between the R + and R − groups were analyzed. Receiver operating characteristic (ROC) curves were used to evaluate the predictive power of spectral CT parameters. Results Of the 104 patients (mean age ± standard deviation: 57.73 years ± 12.56; 60 men) evaluated, 28 (26.9%) were classified as R + . Cox multivariate analysis identified the iodine concentration (hazard ratio [HR]: 1.238; 95% confidence interval [95% CI]: 1.089–1.408; P < 0.001), baseline tumor longest diameter (BLD) (HR: 1.022; 95% CI: 1.005–1.038, P = 0.010), higher baseline CEA (HR: 1.670; 95% CI: 1.016–2.745, P = 0.043), K-RAS mutation (HR: 2.027; 95% CI: 1.192–3.449; P = 0.009), and metachronous liver metastasis (HR: 1.877; 95% CI: 1.179–2.988; P = 0.008) as independent risk factors for patient OS. Logistic multivariate analysis identified the IoD (Odds Ratio [OR]: 2.243; 95% CI: 1.405–4.098; P = 0.002) and clinical N stage of the primary tumor (OR: 4.998; 95% CI: 1.210–25.345; P = 0.035) as independent predictor of R + . Using IoD cutoff values of 4.75 (100ug/cm3) the area under the ROC curve was 0.916, sensitivity and specificity were 80.3% and 96.4%, respectively. Conclusions Spectral CT IoD can predict the OS and response of patients with CRLM after 2 months of treatment with bevacizumab-containing therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.