Trophoblast immune cell interactions are central events in the immune microenvironment at the maternal-fetal interface. Their abnormalities are potential causes of various pregnancy complications, including pre-eclampsia and recurrent spontaneous abortion. Matrix metalloproteinase (MMP) is highly homologous, zinc(II)-containing metalloproteinase involved in altered uterine hemodynamics, closely associated with uterine vascular remodeling. However, the interactions between MMP and the immune microenvironment remain unclear. Here we discuss the key roles and potential interplay of MMP with the immune microenvironment in the embryo implantation process and pregnancy-related diseases, which may contribute to understanding the establishment and maintenance of normal pregnancy and providing new therapeutic strategies. Recent studies have shown that several tissue inhibitors of metalloproteinases (TIMPs) effectively prevent invasive vascular disease by modulating the activity of MMP. We summarize the main findings of these studies and suggest the possibility of TIMPs as emerging biomarkers and potential therapeutic targets for a range of complications induced by abnormalities in the immune microenvironment at the maternal-fetal interface. MMP and TIMPs are promising targets for developing new immunotherapies to treat pregnancy-related diseases caused by immune imbalance.
A conceptual framework for understanding abnormal endometrial decidualization, with considerable significance for the diagnosis and treatment of abnormal decidualization-related changes in non-receptive endometrium in implantation failure during early pregnancy is very important. Here, we found the expression levels of miR-29a in endometrial tissues were associated with the menstrual phases and pregnancy outcome. Inhibition of miR-29a led to decreased decidualization of endometrial stromal cells (ESCs) in vitro, whereas Tet methylcytosine dioxygenase 3 (TET3) and its potential demethylation target, the collagen type I alpha 1 chain (Col1A1), were restored. The binding capacity of TET3 to the Col1A1 promoter could be enhanced by the inhibition of miR-29a. Finally, deletion of TET3 rescued the inhibitory effect of the miR-29a antagomir on the proliferation of decidualized ESCs in vitro and embryo implantation in vivo. Thus, loss of miR-29a causes implantation failure because of the limitation of ESCs decidualization-related changes in non-receptive endometrium during early pregnancy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.