We report remarkable photovoltaic effect in YBa2Cu3O6.96 (YBCO) ceramic between 50 and 300 K induced by blue-laser illumination, which is directly related to the superconductivity of YBCO and the YBCO-metallic electrode interface. There is a polarity reversal for the open circuit voltage Voc and short circuit current Isc when YBCO undergoes a transition from superconducting to resistive state. We show that there exists an electrical potential across the superconductor-normal metal interface, which provides the separation force for the photo-induced electron-hole pairs. This interface potential directs from YBCO to the metal electrode when YBCO is superconducting and switches to the opposite direction when YBCO becomes nonsuperconducting. The origin of the potential may be readily associated with the proximity effect at metal-superconductor interface when YBCO is superconducting and its value is estimated to be ~10–8 mV at 50 K with a laser intensity of 502 mW/cm2. Combination of a p-type material YBCO at normal state with an n-type material Ag-paste forms a quasi-pn junction which is responsible for the photovoltaic behavior of YBCO ceramics at high temperatures. Our findings may pave the way to new applications of photon-electronic devices and shed further light on the proximity effect at the superconductor-metal interface.
I-V characteristics of YBCO-Ag system under blue laser (λ = 450 nm) illumination were studied from 100 to 300 K and obvious photovoltaic effects were observed. All the I-V curves in the temperature range intersect at a point in the first quadrant while the laser points to the cathode electrode, indicating a zero temperature coefficient of resistivity. This implies that the outputting voltage keeps constant in a broad temperature range when a critical bias current is assigned. The intersection points of different laser intensities fall in a straight line, the slope of which (Rc) is independent of temperature and laser intensity.
The obvious photovoltaic effect (Voc ∼ 30 μV) induced by purple-laser illumination at high Tc superconductor YBa2Cu3O6.96/Ag (YBCO/Ag) heterojunction has been observed, revealing that there exists an electrical field across the YBCO/Ag interface. It has been found that magnetic field can dramatically change the photo-induced voltage in the vicinity of superconducting transition. With increasing magnetic fields up to 3 T, the photovoltage at 74 K and 30 mW/mm2 is reduced from 15 μV to zero and then reaches −15 μV. The polarity of the voltage can be switched by applying an external magnetic field, as well as by varying the laser intensity. Our results can be understood in terms of the magnetic vortex penetrating in high Tc superconductors and provide strong evidence for the existence of an interface electrical field in the superconductor/metal heterojunction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.