Because of the continuous stream of touchscreen apps that are claimed to be educational and the increasing use of touchscreen devices in early childhood, considerable attention is being paid to the effect of touchscreens on young children's learning. However, the existing empirical findings in young child samples are not consistent. In this meta-analysis we tested the overall effect of touchscreen devices on young children's (0- to 5-year-olds) learning performance, as well as moderators of this effect, based on 36 empirical articles (79 effect sizes) involving 4,206 participants. The overall analysis showed a significant touchscreen learning effect (d = 0.46), indicating that young children indeed benefited from touchscreen learning. Interestingly, age, learning material domain, comparison group, and experimental environment significantly moderated the effect of touchscreen devices on young children's learning outcome. These findings shed light on the role of touchscreen-related physical experience in early childhood education.
Multiphoton microscopy (MPM) is an enabling technology for visualizing deep-brain structures at high spatial resolution in vivo. Within the low tissue absorption window, shifting to longer excitation wavelengths reduces tissue scattering and boosts penetration depth. Recently, the 2200 nm excitation window has emerged as the last and longest window suitable for deep-brain MPM. However, multiphoton fluorescence imaging at this window has not been demonstrated, due to the lack of characterization of multiphoton properties of fluorescent labels. Here we demonstrate technologies for measuring both the multiphoton excitation and emission properties of fluorescent labels at the 2200 nm window, using (1) 3-photon (ησ 3 ) and 4-photon action cross sections (ησ 4 ) and (2) 3-photon and 4-photon emission spectra both ex vivo and in vivo of quantum dots. Our results show that quantum dots have exceptionally large ησ 3 and ησ 4 for efficient generation of multiphoton fluorescence. Besides, the 3-photon and 4-photon emission spectra of quantum dots are essentially identical to those of one-photon emission, which change negligibly subject to the local environment of circulating blood. Based on these characterization results, we further demonstrate deep-brain vasculature imaging in vivo. Due to the superb multiphoton properties of quantum dots, 3-photon and 4-photon fluorescence imaging reaches a maximum brain imaging depth of 1060 and 940 μm below the surface of a mouse brain, respectively, which enables the imaging of subcortical structures. We thus fill the last gap in multiphoton fluorescence imaging in terms of wavelength selection.
The calcium/calcineurin signaling pathway plays a key role in the development and virulence of plant pathogenic fungi, but the regulation of this signaling pathway is still not clear. In this study, we identified a calcineurin regulator MoRCN1 in the plant pathogenic fungus Magnaporthe oryzae and found it is important for virulence by regulating the calcineurin pathway. MoRCN1 deletion mutants were severely decreased in colony growth and conidia formation. More importantly, the deletion of MoRCN1 led to a significant reduction in virulence due to defects in appressorium formation and invasive growth. The ΔMorcn1 mutants were more sensitive to different stresses and induced host ROS accumulation, suggesting a role of MoRCN1 in stress adaptation. We found that MoRCN1 directly interacted with the calcineurin catalytic subunit MoCNA and affected its protein stability, which was therefore important for regulating the calcineurin pathway. Transcriptome analysis showed that MoRCN1 significantly activated 491 genes and suppressed 337 genes in response to calcium ion, partially overlapped with the MoCRZ1-bound genes. Gene Ontology and KEGG pathway analyses indicated that MoRCN1-regulated genes were enriched in stress adaptation, lipid metabolism, and secondary metabolite biosynthesis, reflecting a function of MoRCN1 in host cell adaptation. Altogether, these results suggest MoRCN1 functions as a regulator of the calcium/calcineurin signaling pathway for fungal development and infection of host cells.
Multiphoton microscopy (MPM) is a powerful imaging technology for brain research. The imaging depth in MPM is partly determined by emission wavelength of fluorescent labels. It has been demonstrated that a longer emission wavelength is favorable for signal detection as imaging depth increases. However, there has been no comparison with near-infrared (NIR) emission. In order to quantitatively analyze the effect of emission wavelength on 3-photon imaging of mouse brains in vivo, we utilize the same excitation wavelength to excite a single fluorescent dye and simultaneously collect NIR and orange-red emission fluorescence at 828[Formula: see text]nm and 620[Formula: see text]nm, respectively. Both experimental and simulation results show that as the imaging depth increases, NIR emission decays less than orange-red fluorescent emission. These results show that it is preferable to shift the emission wavelength to NIR to enable more efficient signal collection deep in the brain.
The brain arteriolar wall is a multilayered structure, whose integrity is of key significance to the brain function. However, resolving these different layers in anmial models in vivo is hampered by the lack of either labeling or imaging technology. Here, we demonstrate that three-photon microscopy (3PM) is an ideal solution. In mouse brain in vivo, excited at the 1700-nm window, label-free third-harmonic generation imaging and three-photon fluorescence (3PF) imaging with Alexa 633 labeling colocalize and resolve the internal elastic lamina. Furthermore, Alexa Fluor 594-conjugated Wheat Germ Agglutinin (WGA-594) shows timedependent labeling behavior. As time lapses, WGA-594 first labels endothelium, and then vascular smooth muscle cells, which are readily captured and resolved with 3PF imaging. Our results show that 3PM, in combination with proper labeling, is a promising technology for investigating the structures of brain arteriolar wall in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.