The aim of this study was to determine the efficacy of immunonutrition vs standard nutrition in cancer patients treated with surgery. Cochrane Central Register of Controlled Trials, EMBASE, MEDLINE, EBSCOhost, and Web of Science were searched. Sixty‐one randomized controlled trials were included. Immunonutrition was associated with a significantly reduced risk of postoperative infectious complications (risk ratio [RR] 0.71 [95% CI, 0.64–0.79]), including a reduced risk of wound infection (RR 0.72 [95% CI, 0.60–0.87]), respiratory tract infection (RR 0.70 [95% CI, 0.59–0.84]), and urinary tract infection (RR 0.69 [95% CI, 0.51–0.94]) as well as a decreased risk of anastomotic leakage (RR 0.70 [95% CI, 0.53–0.91]) and a reduced hospital stay (MD −2.12 days [95% CI −2.72 to −1.52]). No differences were found between the 2 groups with regard to sepsis or all‐cause mortality. Subgroup analyses revealed that receiving arginine + nucleotides + ω‐3 fatty acids and receiving enteral immunonutrition reduced the rates of wound infection and respiratory tract infection. The application of immunonutrition at 25–30 kcal/kg/d for 5–7 days reduced the rate of respiratory tract infection. Perioperative immunonutrition reduced the rate of wound infection. For malnourished patients, immunonutrition shortened the hospitalization time. Therefore, immunonutrition reduces postoperative infection complications and shortens hospital stays but does not reduce all‐cause mortality. Patients who are malnourished before surgery who receive arginine + nucleotides + ω‐3 fatty acids (25–30 kcal/kg/d) via the gastrointestinal tract during the perioperative period (5–7 days) may show better clinical efficacy.
Captivity is an important measure for conservation of an endangered species, and it is becoming a hot topic in conservation biology, which integrates gut microbiota and endangered species management in captivity. As an ancient reptile, the crocodile lizard (Shinisaurus crocodilurus) is facing extreme danger of extinction, resulting in great significance to species conservation in the reserve. Thus, it is critical to understand the differences in gut microbiota composition between captive and wild populations, as it could provide fundamental information for conservative management of crocodile lizards. Here, fecal samples of crocodile lizards were collected from two wild and one captive populations with different ages (i.e., juveniles and adults) and were analyzed for microbiota composition by 16S ribosomal RNA (rRNA) gene amplicon sequencing. This study showed that the lizard gut microbiota was mainly composed of Firmicutes and Proteobacteria. The gut microbiota composition of crocodile lizard did not differ between juveniles and adults, as well as between two wild populations. Interestingly, captivity increased community richness and influenced community structures of gut microbiota in crocodile lizards, compared with wild congeners. This was indicated by higher abundances of the genera Epulopiscium and Glutamicibacter. These increases might be induced by complex integration of simple food resources or human contact in captivity. The gut microbiota functions of crocodile lizards are primarily enriched in metabolism, environmental information processing, genetic information processing, and cellular processes based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. This study provides fundamental information about the gut microbiota of crocodile lizards in wild and captive populations. In the future, exploring the relationship among diet, gut microbiota, and host health is necessary for providing animal conservation strategies.
We initiate the Westlake BioBank for Chinese (WBBC) pilot project with 4,535 whole-genome sequencing (WGS) individuals and 5,841 high-density genotyping individuals, and identify 81.5 million SNPs and INDELs, of which 38.5% are absent in dbSNP Build 151. We provide a population-specific reference panel and an online imputation server (https://wbbc.westlake.edu.cn/) which could yield substantial improvement of imputation performance in Chinese population, especially for low-frequency and rare variants. By analyzing the singleton density of the WGS data, we find selection signatures in SNX29, DNAH1 and WDR1 genes, and the derived alleles of the alcohol metabolism genes (ADH1A and ADH1B) emerge around 7,000 years ago and tend to be more common from 4,000 years ago in East Asia. Genetic evidence supports the corresponding geographical boundaries of the Qinling-Huaihe Line and Nanling Mountains, which separate the Han Chinese into subgroups, and we reveal that North Han was more homogeneous than South Han.
The long non-coding RNAs associating with other molecules can coordinate several physiological processes and their dysfunction can impact diverse human diseases. To date, systematic and intensive annotations on diverse interaction regulations of lncRNAs in human cancer were not available. Here, we built lncRNAfunc, a knowledgebase of lncRNA function in human cancer at https://ccsm.uth.edu/lncRNAfunc, aiming to provide a resource and reference for providing therapeutically targetable lncRNAs and intensive interaction regulations. To do this, we collected 15 900 lncRNAs across 33 cancer types from TCGA. For individual lncRNAs, we performed multiple interaction analyses of different biomolecules including DNA, RNA, and protein levels. Our intensive studies of lncRNAs provide diverse potential mechanisms of lncRNAs that regulate gene expression through binding enhancers and 3′-UTRs of genes, competing for miRNA binding sites with mRNAs, recruiting the transcription factors to gene promoters. Furthermore, we investigated lncRNAs that potentially affect the alternative splicing events through interacting with RNA binding Proteins. We also performed multiple functional annotations including cancer stage-associated lncRNAs, RNA A-to-I editing event-associated lncRNAs, and lncRNA expression quantitative trait loci. lncRNAfunc is a unique resource for cancer research communities to help better understand potential lncRNA regulations and therapeutic lncRNA targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.