The rapid infrastructure development in densely populated areas has had several negative impacts. Increases in urbanization have led to increased LST, and urban ecological systems have been negatively affected. Urban heat islands (UHIs) can be mitigated by understanding how current and future LST phenomena are linked to changes in landscape composition and land use cover (LUC). This study investigated the multi-scale spatial analysis of LUC and LST in Tianjin using remote sensing and GIS data. We used Landsat data from 2005 to 2020 to examine the effects of LUC on LST in urban agglomeration. According to the Urban Thermal Field Variance Index (UTFVI), the city’s ecological evaluation was carried out. Results show that changes in LUC and other anthropogenic activities affect the spatial distribution of LST. For the study years (2004–2009), the estimated mean LST in Tianjin was 25.32 °C, 26.73 °C, 27.62 °C, and 27.93 °C. Between LST and urban areas with other infrastructures, and NDBI, significant positive correlation values were found about 0.53, 0.48, and 0.76 (p < 0.05), respectively. Temperatures would almost certainly increase by 3.87 °C to 7.26 °C as a result of decreased plant cover and increased settlements. These findings strongly imply a correlation between LST and the vegetation index. Between 2005 and 2020, the anticipated increase in LST of 3.39 °C is expected to harm urban environmental health. This study demonstrates how Tianjin and other cities can achieve ecological sustainability.
Late embryogenesis abundant (LEA) proteins are members of a large and highly diverse family that play critical roles in protecting cells from abiotic stresses and maintaining plant growth and development. However, the identification and biological function of genes of Secale cereale LEA (ScLEA) have been rarely reported. In this study, we identified 112 ScLEA genes, which can be divided into eight groups and are evenly distributed on all rye chromosomes. Structure analysis revealed that members of the same group tend to be highly conserved. We identified 12 pairs of tandem duplication genes and 19 pairs of segmental duplication genes, which may be an expansion way of LEA gene family. Expression profiling analysis revealed obvious temporal and spatial specificity of ScLEA gene expression, with the highest expression levels observed in grains. According to the qRT-PCR analysis, selected ScLEA genes were regulated by various abiotic stresses, especially PEG treatment, decreased temperature, and blue light. Taken together, our results provide a reference for further functional analysis and potential utilization of the ScLEA genes in improving stress tolerance of crops.
Urbanization has adverse environmental effects, such as rising surface temperatures. This study analyzes the relationship between the urban heat island (UHI) intensity and Tianjin city’s land cover characteristics. The land use cover change (LUCC) effects on the green areas and the land surface temperature (LST) were also studied. The land cover characteristics were divided into five categories: a built-up area, an agricultural area, a bare area, a forest, and water. The LST was calculated using the thermal bands of spatial images taken from 2005 to 2020. The increase in the built-up area was mainly caused by the agricultural area decreasing by 11.90%. The average land surface temperature of the study area increased from 23.50 to 36.51 °C, and the region moved to a high temperature that the built-up area’s temperature increased by 1.5%. Still, the increase in vegetation cover was negative. From 2020 to 2050, the land surface temperature is expected to increase by 9.5 °C. The high-temperature areas moved into an aerial distribution, and the direction of urbanization determined their path. Urban heat island mitigation is best achieved through forests and water, and managers of urban areas should avoid developing bare land since they may suffer from degradation. The increase in the land surface temperature caused by the land cover change proves that the site is becoming more urbanized. The findings of this study provide valuable information on the various aspects of urbanization in Tianjin and other regions. In addition, future research should look into the public health issues associated with rapid urbanization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.