Vernier-gimballing magnetically suspended flywheel is often used for attitude control and interference suppression of spacecrafts. Due to the special structure of the conical magnetic bearing, the radial component generated by the axial magnetic force and the change of the magnetic air gap will cause the nonlinearity of stiffness and disturbance. That will lead to not only poor stability of the suspension control system but also unsatisfactory tracking accuracy of the rotor position. To solve the nonlinear problem of the system, this article proposes a proportional–integral–derivative neural network control scheme. First, the rotor model considering the nonlinear variation of disturbance and stiffness parameters is established. Then, the weight of neural network is adjusted by the gradient descent method online to ensure the accurate output of magnetic force. Finally, the convergence analysis is carried out based on the Lyapunov stability theory. Compared with the general proportional–integral–derivative control and the radial basis function neural network control, the simulation results demonstrate that the proposed method has the highest tracking accuracy and excellent performance in improving stability. The experimental results prove the correctness of the theoretical analysis and the validity of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.