Chlorophylls (Chls) are abundant, naturally occurring pigments that play key roles in light-harvesting and electron/energy transfer in natural photosynthetic apparatus. To demonstrate the idea that Chls are suitable hole transporters, we employed two Chl derivatives, Chl-1 and Chl-2, which self-assembled readily into π-stacking aggregates through a simple spincasting process, in perovskite solar cells (PSCs). The Chl aggregate films exhibit an ultra-smooth film surface, high hole mobility, appropriate energy levels, and efficient hole injection efficiencies that are all key characteristics for efficient hole transporters in PSCs. CH NH PbI Cl -based PSCs with these Chls as hole transporters were fabricated and compared with P3HT as a standard hole transporter. PSCs based on Chl-1 and Chl-2 without the use of typical additives, such as 4-tert-butylpyridine and lithium bis(trifluoromethanesulfinyl)imide, gave power conversion efficiencies of 11.44 and 8.06 %, respectively. This research provides a unique way to incorporate low-cost and environmentally friendly natural photosynthetic materials in the development of highly efficient photovoltaic devices.
Tandem 39 untranslated regions (UTRs), produced by alternative polyadenylation (APA) in the terminal exon of a gene, could have critical roles in regulating gene networks. Here we profiled tandem poly(A) events on a genome-wide scale during the embryonic development of zebrafish (Danio rerio) using a recently developed SAPAS method. We showed that 43% of the expressed protein-coding genes have tandem 39 UTRs. The average 39 UTR length follows a V-shaped dynamic pattern during early embryogenesis, in which the 39 UTRs are first shortened at zygotic genome activation, and then quickly lengthened during gastrulation. Over 4000 genes are found to switch tandem APA sites, and the distinct functional roles of these genes are indicated by Gene Ontology analysis. Three families of cis-elements, including miR-430 seed, U-rich element, and canonical poly(A) signal, are enriched in 39 UTR-shortened/lengthened genes in a stage-specific manner, suggesting temporal regulation coordinated by APA and trans-acting factors. Our results highlight the regulatory role of tandem 39 UTR control in early embryogenesis and suggest that APA may represent a new epigenetic paradigm of physiological regulations.[Supplemental material is available for this article.]Embryonic development involves a series of complex but ordered cellular processes including cell proliferation, differentiation, and migration under robust and precise management by gene regulatory networks (Gilbert 2003). As a major regulatory region terminating a transcribed mRNA, the 39 UTR plays important roles in the transcriptional (Veraldi et al.
Purpose Wound represents a major health challenge as they consume a large amount of healthcare resources to improve patient's quality of life. Many scientific studies have been conducted in search of ideal biomaterials with wound-healing activity for clinical use and collagen has been proven to be a suitable candidate biomaterial. This study intended to investigate the wound healing activity of collagen peptides derived from jellyfish following oral administration. Methods In this study, collagen was extracted from the jellyfish-- Rhopilema esculentum using 1% pepsin. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and fourier transform infrared (FTIR) were used to identify and determine the molecular weight of the jellyfish collagen. Collagenase II, papain and alkaline proteinase were used to breakdown jellyfish collagen into collagen peptides. Wound scratch assay (in vitro) was done to determine migration potential of human umbilical vein endothelial cells (HUVEC) covering the artificial wound created on the cell monolayer following treatment with collagen peptides. In vivo studies were conducted to determine the effects of collagen peptides on wound healing by examining wound contraction, re-epithelialization, tissue regeneration and collagen deposition on the wounded skin of mice. Confidence level ( p < 0.05) was considered significant using GraphPad Prism software. Results The yield of collagen was 4.31%. The SDS-PAGE and FTIR showed that extracted collagen from jellyfish was type I. Enzymatic hydrolysis of this collagen using collagenase II produced collagen peptides (CP 1 ) and hydrolysis with alkaline proteinase/papain resulted into collagen peptides (CP 2 ). Tricine SDS-PAGE revealed that collagen peptides consisted of protein fragments with molecular weight <25 kDa. Wound scratch assay showed that there were significant effects on the scratch closure on cells treated with collagen peptides at a concentration of 6.25 μg/mL for 48 h as compared to the vehicle treated cells. Overall treatment with collagen peptide on mice with full thickness excised wounds had a positive result in wound contraction as compared with the control. Histological assessment of peptides treated mice models showed remarkable sign of re-epithelialization, tissue regeneration and increased collagen deposition. Immunohistochemistry of the skin sections showed a significant increase in β-fibroblast growth factor (β-FGF) and the transforming growth factor-β 1 (TGF-β 1 ) expression on collagen peptides treated group. Conclusion Collagen peptides derived from the jellyfish– Rhopilema esculentum can accelerate the wound healing process thus could be a therapeutic potential product that may be beneficial in wound clinics in the fu...
Chronic infection and inflammation are among the most important factors contributing to cancer development and growth. Toll-like receptors (TLRs) are important families of pattern recognition receptors, which recognize conserved components of microbes and trigger the immune response against invading microorganisms. TLR4 is the signaling receptor for lipopolysaccharide (LPS), the endotoxic component of Gram-negative bacteria. Recent studies demonstrate that TLRs are expressed in some tumor cells, and that the expression of TLRs in these cells is associated with tumorigenesis. Cervical intraepithelial neoplasia (CIN) is a key stage in the development of cervical cancer and human papillomavirus (HPV) infection is an essential factor in cervical carcinogenesis. As the cervix is in constant contact with bacteria, especially Gram-negative bacteria, we hypothesize that TLR4-mediated bacterial stimulation may be involved in the tumorigenesis of cervical cancer. In the present study, the expression and distribution of TLR4 in CIN and cervical squamous carcinoma were investigated by immunohistochemistry. To our surprise, we observed a decrease in the expression of TLR4 during the progression of cervical neoplasia and this down-regulation of TLR4 appeared to be associated with the expression of P(16INK4A) which is a crucial marker of HPV integration into host cells. These data offer further insight regarding the association of HPV infection and TLR signaling during the carcinogenesis of cervical cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.