Soil organic carbon (SOC), nitrogen (N), and phosphorus (P) are three essential soil nutrients for plant growth, and their stoichiometric ratios are already important indices of elemental balance and the soil fertility status in soil ecosystems. The evolution mechanism of the SOC, Total Nitrogen (TN), Total Phosphorus (TP), and stoichiometry following the “conversion of cropland to forest program” (CCFP) in southwest China is not yet clear. Seven different CCFP restoration models, including Zenia insignis (RD), Toona sinensis (XC), Castanea mollissima (BL), Citrus reticulate (GJ), Zenia insignis and Guimu-1 elephant grass (RG), Guimu-1 elephant grass (GM), and abandoned cropland (LH), were chosen to explore changes in the concentration and stoichiometry of the SOC, TN, and TP, and their recovery times, at a depth of 0–100 cm. The results indicate that the SOC and TN concentrations in different restoration models all increased with restoration years in the topsoil, whereas the soil TP concentration remained relatively stable. The soil C:N and C:P ratios increased with increasing restoration years in the topsoil, whereas the N: P ratio was relatively stable over time. After ten years of reforestation, the SOC and TN concentrations decreased as the soil layer increased. The effects of the restoration model on the C: N ratios were greater in shallow soils. Our results suggest a complex reaction of SOC, soil TN, and soil TP concentrations and stoichiometry to the vegetation restoration mode, particularly in the topsoil. This research further improves the understanding of SOC, N, and P interactions and restricted nutrition, and provides relevant theoretical support for vegetation restoration in the southwest karst region.