Epigenetic remodeling is required during B cell differentiation. However, little is known about the direct functions of epigenetic enzymes in Ab-secreting cells (ASC) in vivo. In this study, we examined ASC differentiation independent of T cell help and germinal center reactions using mice with inducible or B cell-specific deletions of Following stimulation with influenza virus or LPS,-deficient ASC poorly proliferated and inappropriately maintained expression of inflammatory pathways, B cell-lineage transcription factors, and Blimp-1-repressed genes, leading to fewer and less functional ASC. In the absence of EZH2, genes that normally gained histone H3 lysine 27 trimethylation were dysregulated and exhibited increased chromatin accessibility. Furthermore, EZH2 was also required for maximal Ab secretion by ASC, in part due to reduced mitochondrial respiration, impaired glucose metabolism, and poor expression of the unfolded-protein response pathway. Together, these data demonstrate that EZH2 is essential in facilitating epigenetic changes that regulate ASC fate, function, and metabolism.
The genomic loci associated with B cell differentiation that are subject to transcriptional and epigenetic regulation in vivo are not well defined, leaving a gap in our understanding of the development of humoral immune responses. Here, using an in vivo T cell independent B cell differentiation model, we define a cellular division-dependent cis-regulatory element road map using ATAC-seq. Chromatin accessibility changes correlate with gene expression and reveal the reprogramming of transcriptional networks and the genes they regulate at specific cell divisions. A subset of genes in naive B cells display accessible promoters in the absence of transcription and are marked by H3K27me3, an EZH2 catalyzed repressive modification. Such genes encode regulators of cell division and metabolism and include the essential plasma cell transcription factor Blimp-1. Chemical inhibition of EZH2 results in enhanced plasma cell formation, increased expression of the above gene set, and premature expression of Blimp-1 ex vivo. These data provide insights into cell-division coupled epigenetic and transcriptional processes that program plasma cells.
Background Fibrinogen-like protein 1 (FGL1)—Lymphocyte activating gene 3 (LAG-3) pathway is a promising immunotherapeutic target and has synergistic effect with programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1). However, the prognostic significance of FGL1-LAG-3 pathway and the correlation with PD-L1 in hepatocellular carcinoma (HCC) remain unknown. Methods The levels of LAG-3, FGL1, PD-L1 and cytotoxic T (CD8 + T) cells in 143 HCC patients were assessed by multiplex immunofluorescence. Associations between the marker’s expression and clinical significances were studied. Results We found FGL1 and LAG-3 densities were elevated while PD-L1 and CD8 were decreased in HCC tissues compared to adjacent normal liver tissues. High levels of FGL1 were strongly associated with high densities of LAG-3 + cells but not PD-L1. CD8 + T cells densities had positive correlation with PD-L1 levels and negative association with FGL1 expression. Elevated densities of LAG-3 + cells and low levels of CD8 + T cells were correlated with poor disease outcome. Moreover, LAG-3 + cells deteriorated patient stratification based on the abundance of CD8 + T cells. Patients with positive PD-L1 expression on tumor cells (PD-L1 TC + ) tended to have an improved survival than that with negative PD-L1 expression on tumor cells (PD-L1 TC − ). Furthermore, PD-L1 TC − in combination with high densities of LAG-3 + cells showed the worst prognosis, and PD-L1 TC + patients with low densities of LAG-3 + cells had the best prognosis. Conclusions LAG-3, FGL1, PD-L1 and CD8 have distinct tissue distribution and relationships with each other. High levels of LAG-3 + cells and CD8 + T cells represent unfavorable and favorable prognostic biomarkers for HCC respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.