With the increasing power density of electronics components, the heat dissipation capacity of heat sinks gradually becomes a bottleneck. Many structural optimization methods, including topology optimization, have been widely used for heat sinks. Due to its high design freedom, topology optimization is suggested for the design of heat sinks using a transient pseudo-3D thermofluid model to acquire better instantaneous thermal performance. The pseudo-3D model is designed to reduce the computational cost and maintain an acceptable accuracy. The model relies on an artificial heat convection coefficient to couple two layers and establish the approximate relationship with the corresponding 3D model. In the model, a constant pressure drop and heat generation rate are treated. The material distribution is optimized to reduce the average temperature of the base plate at the prescribed terminal time. Furthermore, to reduce the intermediate density regions during the density-based topology optimization procedure, a detailed analysis of interpolation functions is made and the penalty factors are chosen on this basis. Finally, considering the engineering application of the model, a practical model with more powerful cooling medium and higher inlet pressure is built.The optimized design shows a better instantaneous thermal performance and provides 66.7% of the pumping power reduction compared with reference design.
Origami bellows are formed by folding flat sheets into closed cylindrical structures along predefined creases. As the bellows unfold, the volume of the origami structure will change significantly, offering potential for use as inflatable deployable structures. This paper presents a geometric study of the volume of multi-stable Miura-ori and Kresling bellows, focusing on their application as deployable space habitats. Such habitats would be compactly stowed during launch, before expanding once in orbit. The internal volume ratio between different deployed states is investigated across the geometric design space. As a case study, the SpaceX Falcon 9 payload fairing is chosen for the transportation of space habitats. The stowed volume and effective deployed volume of the origami space habitats are calculated to enable comparison with conventional habitat designs. Optimal designs for the deployment of Miura-ori and Kresling patterned tubular space habitats are obtained using particle swarm optimisation (PSO) techniques. Configurations with significant volume expansion can be found in both patterns, with the Miura-ori patterns achieving higher volume expansion due to their additional radial deployment. A multi-objective PSO (MOPSO) is adopted to identify trade-offs between volumetric deployment and radial expansion ratios for the Miura-ori pattern.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.