A large amount of labelled data (absolute information) is usually needed for an ordinal classifier to attain a good performance. As shown in a recent paper by the present authors, the lack of a large amount of absolute information can be overcome by additionally considering some side information in the form of relative information, thus augmenting the method of nearest neighbors. In this paper, we adapt the method of nearest neighbors for dealing with a specific type of relative information: frequency distributions of pairwise comparisons (rather than a single pairwise comparison). We test the proposed method on some classical machine learning datasets and demonstrate its effectiveness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.