The evolution of antibiotic resistance among bacteria threatens our continued ability to treat infectious diseases. The need for sustainable strategies to cure bacterial infections has never been greater. So far, all attempts to restore susceptibility after resistance has arisen have been unsuccessful, including restrictions on prescribing [1] and antibiotic cycling [2], [3]. Part of the problem may be that those efforts have implemented different classes of unrelated antibiotics, and relied on removal of resistance by random loss of resistance genes from bacterial populations (drift). Here, we show that alternating structurally similar antibiotics can restore susceptibility to antibiotics after resistance has evolved. We found that the resistance phenotypes conferred by variant alleles of the resistance gene encoding the TEM β-lactamase (bla
TEM) varied greatly among 15 different β-lactam antibiotics. We captured those differences by characterizing complete adaptive landscapes for the resistance alleles bla
TEM-50 and bla
TEM-85, each of which differs from its ancestor bla
TEM-1 by four mutations. We identified pathways through those landscapes where selection for increased resistance moved in a repeating cycle among a limited set of alleles as antibiotics were alternated. Our results showed that susceptibility to antibiotics can be sustainably renewed by cycling structurally similar antibiotics. We anticipate that these results may provide a conceptual framework for managing antibiotic resistance. This approach may also guide sustainable cycling of the drugs used to treat malaria and HIV.
In this article, we present a parallel prioritized Jacobian-based inverse kinematics algorithm for multithreaded architectures. We solve damped least squares inverse kinematics using a parallel line search by identifying and sampling critical input parameters. Parallel competing execution paths are spawned for each parameter in order to select the optimum that minimizes the error criteria. Our algorithm is highly scalable and can handle complex articulated bodies at interactive frame rates. We show results on complex skeletons consisting of more than 600 degrees of freedom while being controlled using multiple end effectors. We implement the algorithm both on multicore and GPU architectures and demonstrate how the GPU can further exploit fine-grain parallelism not directly available on a multicore processor. Our implementations are 10 to 150 times faster compared to a state-of-the-art serial implementation while providing higher accuracy. We also demonstrate the scalability of the algorithm over multiple scenarios and explore the GPU implementation in detail.
Abstract-We introduce an approach for enabling samplingbased planners to compute motions with humanlike appearance. The proposed method is based on a space of blendable example motions collected by motion capture. This space is explored by a sampling-based planner that is able to produce motions around obstacles while keeping solutions similar to the original examples. The results therefore largely maintain the humanlike characteristics observed in the example motions. The method is applied to generic upper-body actions and is complemented by a locomotion planner that searches for suitable body placements for executing upper-body actions successfully. As a result, our overall multi-modal planning method is able to automatically coordinate whole-body motions for action execution among obstacles, and the produced motions remain similar to example motions given as input to the system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.