Taylor & Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor & Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
Upper Maastrichtian to lower Paleocene, coarse‐grained deposits of the Lefipán Formation in Chubut Province, (Patagonia, Argentina) provide an opportunity to study environmental changes across the Cretaceous–Palaeogene (K–Pg) boundary in a shallow marine depositional environment. Marine palynological and organic geochemical analyses were performed on the K–Pg boundary interval of the Lefipán Formation at the San Ramón section. The palynological and organic geochemical records from the San Ramón K–Pg boundary section are characteristic of a highly dynamic, nearshore setting. High abundances of terrestrial palynomorphs, high BIT‐index values and the occasional presence of plant fossils are indicative of a large input of terrestrial organic material. The organic‐walled dinoflagellate cyst (dinocyst) assemblage is generally dominated by Senegalinium and other peridinioid dinocyst taxa, indicative of high‐nutrient conditions and decreased salinities, probably associated with a large fluvial input. The reconstructed sea surface temperatures range from 25°C to 27°C, in accordance with the tropical climate inferred by palynological and megafloral studies. As in the Bajada del Jagüel section, ~500 km north‐north‐east of San Ramón, peaks of Senegalinium spp. were recorded below and above the K–Pg boundary, possibly related to enhanced runoff resulting from more humid climatic conditions. The lithological, palynological and organic geochemical records suggest the occurrence of a sea‐level regression across the K–Pg boundary, resulting in a hiatus directly at the boundary in both sections, followed by a transgression in the Danian.
Diverse freshwater aquatic palynomorphs are present among rich terrestrial palynofloras from the upper part of the Potrerillos and Cacheuta formations outcropping in the Cuyana Basin at the southern extremity of the Precordillera of Argentina. The Potrerillos ⁄ Cacheuta sequence includes fluvial, deltaic and lacustrine facies deposited in the early Late Triassic fault-bounded syn-rift Cacheuta hemigraben. The phytoplankton described and illustrated consist of representatives of colonial chlorococcalean algae belonging to the Hydrodictyaceae (Plaesiodictyon) and Botryococcaceae (Botryococcus), a diverse group of Zygnemataceae zygospores, a freshwater dinoflagellate cyst (Bosedinia) and acritarchs (sphaeromorphs). Zygnematacean zygospores are represented by species of Gelasinicysta?, Lecaniella, Mougeotia, Ovoidites, Peltacystia and Schizocystia. Of these, Gelasinicysta? cuyanensis sp. nov. is newly described. Quantitative analysis of the palynofloras permits interpretation of changes in the local vegetation and phytoplankton communities controlled by changes in environmental setting. Two algal associations are recognized as belonging to different stages in the evolution of the basin. Diverse zygnematacean assemblages along with hydrodictyacean, botryococcacean and leiosphere ⁄ sphaeromorph algae are common in fluvialdeltaic environments of the upper part of the Potrerillos Formation and the lowermost part of the Cacheuta Formation. Higher in the sections (in the Cacheuta Formation) Botryococcus dominates, in association with amorphous kerogen, representing deposition in a relatively deep, quietwater, lacustrine environment where anoxic conditions prevailed. In the Cacheuta hemigraben the lacustrine shales have average TOC values of 4 per cent (locally reaching 20 per cent), with some terrigenous components (Type II ⁄ III kerogen), but dominant amorphous, algal-like, organic matter (Type I ⁄ II kerogen). Oils derived from these source rocks are predominantly waxy.
Tardigrade xenarthrans are today represented only by the two tree sloth genera Bradypus and Choloepus, which inhabit the Neotropical rainforests and are characterized by their slowness and suspensory locomotion. Sloths have been recognized in South America since the early Oligocene. This monophyletic group is represented by five clades traditionally recognized as families: Bradypodidae, Megalonychidae, Mylodontidae ( †), Megatheriidae ( †) and Nothrotheriidae ( †). A new nothrotheriid ground sloth represented by a dentary and several postcranial elements, Aymaratherium jeani gen. nov., sp. nov., from the early Pliocene locality of Pomata-Ayte (Bolivia) is reported. This small-to medium-sized species is characterized especially by its dentition and several postcranial features. It exhibits several convergences with the 'aquatic' nothrotheriid sloth Thalassocnus and the giant megatheriid ground sloth Megatherium (M.) americanum, and is interpreted as a selective feeder, with good pronation and supination movements. The tricuspid caniniform teeth of Aymaratherium may represent a transitional stage between the caniniform anterior teeth of basal megatherioids and basal nothrotheriids (1/1C-4/3M as in Hapalops or Mionothropus) and the molariform anterior teeth of megatheriids (5/4M, e.g. Megatherium). To highlight the phylogenetic position of this new taxon among nothrotheriid sloths, we performed a cladistic assessment of the available dental and postcranial evidence. Our results, derived from a TNT treatment of a data matrix largely based on a published phylogenetic data set, indicate that Aymaratherium is either sister taxon to Mionothropus or sister to the clade Nothrotheriini within Nothrotheriinae. They further support the monophyly of both the Nothrotheriinae and the Nothrotheriini, as suggested previously by several authors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.