SummarySwarming is a form of bacterial translocation that involves cell differentiation and is characterized by a rapid and co-ordinated population migration across solid surfaces. We have isolated a Tn5 mutant of Sinorhizobium meliloti GR4 showing conditional swarming. Swarm cells from the mutant strain QS77 induced on semi-solid minimal medium in response to different signals are hyperflagellated and about twice as long as wild-type cells. Genetic and physiological characterization of the mutant strain indicates that QS77 is altered in a gene encoding a homologue of the FadD protein (long-chain fatty acyl-CoA ligase) of several microorganisms. Interestingly and similar to a less virulent Xanthomonas campestris fadD(rpfB) mutant, QS77 is impaired in establishing an association with its host plant. In trans expression of multicopy fadD restored growth on oleate, control of motility and the symbiotic phenotype of QS77, as well as acyl-CoA synthetase activity of an Escherichia coli fadD mutant. The S. meliloti QS77 strain shows a reduction in nod gene expression as well as a differential regulation of motility genes in response to environmental conditions. These data suggest that, in S. meliloti, fatty acid derivatives may act as intracellular signals controlling motility and symbiotic performance through gene expression.
The short-term effects of the herbicide glyphosate (1.25-10 mM) on the growth, nitrogen fixation, carbohydrate metabolism, and shikimate pathway were investigated in leaves and nodules of nodulated lupine plants. All glyphosate treatments decreased nitrogenase activity rapidly (24 h) after application, even at the lowest and sublethal dose used (1.25 mM). This early effect on nitrogenase could not be related to either damage to nitrogenase components (I and II) or limitation of carbohydrates supplied by the host plant. In fact, further exposure to increasing glyphosate concentrations (5 mM) and greater time after exposure (5 days) decreased nodule starch content and sucrose synthase (SS; EC 2.4.1.13) activity but increased sucrose content within the nodule. These effects were accompanied by a great inhibition of the activity of phosphoenolpyruvate carboxylase (PEPC; EC 4.1.1.31). There were remarkable and rapid effects on the increase of shikimic and protocatechuic (PCA) acids in nodules and leaves after herbicide application. On the basis of the role of shikimic acid and PCA in the regulation of PEPC, as potent competitive inhibitors, this additional effect provoked by glyphosate on 5-enolpyruvylshikimic-3-phosphate synthase enzyme (EPSPS; EC 2.5.1.19) inhibition would divert most PEP into the shikimate pathway, depriving energy substrates to bacteroids to maintain nitrogen fixation. These findings provide a new explanation for the effectiveness of glyphosate as a herbicide in other plant tissues, for the observed differences in tolerance among species or cultivars, and for the transitory effects on glyphosate-resistant transgenic crops under several environmental conditions.
The effect of boron deficiency on symbiotic nitrogen fixation in pea (Pisum safivum) was examined. l h e absence of boron in the culture medium resulted in a decrease of the number of nodules and an alteration of nodule development leading to an inhibition of nitrogenase activity. Examination of boron-deficient nodules showed dramatic changes in cell walls and in both peribacteroid and infection thread membranes, suggesting a role for boron in the stability of these structures. These results indicate that boron is a requirement for normal nodule development and functionality.
BackgroundEndophytic bacteria that have plant growth promoting traits are of great interest in green biotechnology. The previous thought that the Azoarcus genus comprises bacteria that fit into one of two major eco-physiological groups, either free-living anaerobic biodegraders of aromatic compounds or obligate endophytes unable to degrade aromatics under anaerobic conditions, is revisited here.Methodology/Principal FindingsLight, confocal and electron microscopy reveal that Azoarcus sp. CIB, a facultative anaerobe β-proteobacterium able to degrade aromatic hydrocarbons under anoxic conditions, is also able to colonize the intercellular spaces of the rice roots. In addition, the strain CIB displays plant growth promoting traits such nitrogen fixation, uptake of insoluble phosphorus and production of indoleacetic acid. Therefore, this work demonstrates by the first time that a free-living bacterium able to degrade aromatic compounds under aerobic and anoxic conditions can share also an endophytic lifestyle. The phylogenetic analyses based on the 16S rDNA and nifH genes confirmed that obligate endophytes of the Azoarcus genus and facultative endophytes, such as Azoarcus sp. CIB, locate into different evolutionary branches.Conclusions/SignificanceThis is the first report of a bacterium, Azoarcus sp. CIB, able to degrade anaerobically a significant number of aromatic compounds, some of them of great environmental concern, and to colonize the rice as a facultative endophyte. Thus, Azoarcus sp. CIB becomes a suitable candidate for a more sustainable agricultural practice and phytoremediation technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.