Although symbiotic interactions are ubiquitous in the living world, examples of developmental symbioses are still scarce. We show here the crucial role of Wolbachia in the oogenesis of filarial nematodes, a class of parasites of biomedical and veterinary relevance. We applied newly developed techniques to demonstrate the earliest requirements of Wolbachia in the parasite germline preceding the production of faulty embryos in Wolbachia-depleted nematodes. We show that Wolbachia stimulate germline proliferation in a cell-autonomous manner, and not through nucleotide supplementation as previously hypothesized. We also found Wolbachia to maintain the quiescence of a pool of germline stem cells to ensure a constant delivery of about 1,400 eggs per day for many years. The loss of quiescence upon Wolbachia depletion as well as the disorganization of the distal germline suggest that Wolbachia are required to execute the proper germline stem cell developmental program in order to produce viable eggs and embryos.
Aging and fertility are two interconnected processes. From invertebrates to mammals, absence of the germline increases longevity. Here we show that loss of function of sul-2, the Caenorhabditis elegans steroid sulfatase (STS), raises the pool of sulfated steroid hormones, increases longevity and ameliorates protein aggregation diseases. This increased longevity requires factors involved in germline-mediated longevity (daf-16, daf-12, kri-1, tcer-1 and daf-36 genes) although sul-2 mutations do not affect fertility. Interestingly, sul-2 is only expressed in sensory neurons, suggesting a regulation of sulfated hormones state by environmental cues. Treatment with the specific STS inhibitor STX64, as well as with testosterone-derived sulfated hormones reproduces the longevity phenotype of sul-2 mutants. Remarkably, those treatments ameliorate protein aggregation diseases in C. elegans, and STX64 also Alzheimer’s disease in a mammalian model. These results open the possibility of reallocating steroid sulfatase inhibitors or derivates for the treatment of aging and aging related diseases.
Nuclear envelope (NE) architecture and aging have been associated since the discovery that certain human progeria diseases are due to perturbations in processing of lamin A protein, generating alterations in NE morphology. However, whether changes in the NE are a causal effect of normal and premature aging is still controversial. Caenorhabditis elegans is a model organism where observations supporting both, dependent and independent roles of nuclear architecture in the aging process, have been reported.Using this model organism, we found that the long-lived glp-1 mutant and dietary restriction delayed age-associated nuclear morphology changes. In addition, we observed that the long-lived mutant of the insulin/IGF receptor daf-2 delayed the agedependent changes of nuclear architecture at 25ºC, as previously described. However, when daf-2 animals were incubated at 20ºC they remained long-lived, but nuclear appearance changed at similar rate as in the wild type. This supports the idea that both phenotypes, longevity and maintenance of nuclear architecture are tightly associated but can be separated and argues that nuclear morphology deterioration is not a cause of the natural aging process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.