Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
Registro de acceso restringido Este recurso no está disponible en acceso abierto por política de la editorial. No obstante, se puede acceder al texto completo desde la Universitat Jaume I o si el usuario cuenta con suscripción. Registre d'accés restringit Aquest recurs no està disponible en accés obert per política de l'editorial. No obstant això, es pot accedir al text complet des de la Universitat Jaume I o si l'usuari compta amb subscripció. Restricted access item This item isn't open access because of publisher's policy. The full--text version is only available from Jaume I University or if the user has a running suscription to the publisher's contents.
Linear matrix equations such as Sylvester, Lyapunov and Commutant matrix equations play an einportani role i n many Control Problems, like the design of Luenberger's observers, pole assignment problems, system balancing and model reduction, inertia and stability problems, generic matrix function computation, etc. Two of the most eficient methods f o r solving linear matrix equations are the Schur algorithm and the Hessenberg-Schur algorithm. In this paper, we present parallel cyclic algorithms based on the Schur and Hessenberg-Schur methods f o r solving the Sylvester matrix equation. W e also present parallel cyclic algorithms based on the Schur method f o r solving Lyapunov and Commutant matrix equations. I n the case of Lyapunov equations we also consider the problem of computing the Cholesky factor of the unknown matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.