The preparation of a series of complexes of the type CpIrX2(NHC) provides effective catalysts for the H/D exchange of a wide range of organic molecules in methanol-d4. The reaction proceeds with higher yields under milder reaction conditions than previous CpIr systems reported thus far. For comparative purposes, we also studied the catalytic activity of CpIrCl2(PMe3) under the same reaction conditions. The molecular structures of two of the new CpIr(NHC) complexes are described.
Heterometallic compounds as anticancer agents demonstrating in vivo potential for the first time. Titanocene–gold derivatives: promising candidates for renal cancer.
A series
of organometallic ruthenium(II) complexes containing iminophosphorane
ligands have been synthesized and characterized. Cationic compounds
with chloride as counterion are soluble in water (70–100 mg/mL).
Most compounds (especially highly water-soluble 2) are
more cytotoxic to a number of human cancer cell lines than cisplatin.
Initial mechanistic studies indicate that the cell death type for
these compounds is mainly through canonical or caspase-dependent apoptosis,
nondependent on p53, and that the compounds do not interact with DNA
or inhibit protease cathepsin B. In vivo experiments of 2 on MDA-MB-231 xenografts in NOD.CB17-Prkdc SCID/J mice showed an
impressive tumor reduction (shrinkage) of 56% after 28 days of treatment
(14 doses of 5 mg/kg every other day) with low systemic toxicity.
Pharmacokinetic studies showed a quick absorption of 2 in plasma with preferential accumulation in the breast tumor tissues
when compared to kidney and liver, which may explain its high efficacy
in vivo.
A series of gold(III) and palladium(II) heterometallic complexes with new iminophosphorane ligands derived from ferrocenyl-phosphanes [{Cp-P(Ph2)=N-Ph}2Fe] (1), [{Cp-P(Ph2)=N-CH2-2-NC5H4}2Fe] (2) and [{Cp-P(Ph2)=N-CH2-2-NC5H4}Fe(Cp)] (3) have been synthesized and structurally characterized. Ligands 2 and 3 afford stable coordination complexes [AuCl2(3)]ClO4, [{AuCl2}2(2)](ClO4)2, [PdCl2(3)] and [{PdCl2}2(2)]. The complexes have been evaluated for their antripoliferative properties in human ovarian cancer cells sensitive and resistant to cisplatin (A2780S/R), in human breast cancer cells (MCF7) and in a non-tumorigenic human embryonic kidney cell line (HEK-293T). The highly cytotoxic trimetallic derivatives M2Fe (M = Au, Pd) are more cytotoxic to cancer cells than their corresponding monometallic fragments. Moreover, these complexes were significantly more cytotoxic than cisplatin in the resistant A2780R and the MCF7 cell lines. Studies of the interactions of the trimetallic compounds with DNA and the zinc-finger protein PARP-1 indicate that they exert anticancer effects in vitro based on different mechanisms of actions with respect to cisplatin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.