Objective: Phosphomannomutase deficiency (PMM2 congenital disorder of glycosylation [PMM2-CDG]) causes cerebellar syndrome and strokelike episodes (SLEs). SLEs are also described in patients with gain-of-function mutations in the CaV2.1 channel, for which acetazolamide therapy is suggested. Impairment in N-glycosylation of CaV2.1 promotes gain-of-function effects and may participate in cerebellar syndrome in PMM2-CDG. AZATAX was designed to establish whether acetazolamide is safe and improves cerebellar syndrome in PMM2-CDG. Methods: A clinical trial included PMM2-CDG patients, with a 6-month first-phase single acetazolamide therapy group, followed by a randomized 5-week withdrawal phase. Safety was assessed. The primary outcome measure was improvement in the International Cooperative Ataxia Rating Scale (ICARS). Other measures were the Nijmegen Pediatric CDG Rating Scale (NPCRS), a syllable repetition test (PATA test), and cognitive scores. Results: Twenty-four patients (mean age = 12.3 AE 4.5 years) were included, showing no serious adverse events. Thirteen patients required dose adjustment due to low bicarbonate or asthenia. There were improvements on ICARS (34.9 AE 23.2 vs 40.7 AE 24.8, effect size = 1.48, 95% confidence interval [CI] = 4.0-7.6, p < 0.001), detected at 6 weeks in 18 patients among the 20 responders, on NPCRS (95% CI = 0.3-1.6, p = 0.013) and on the PATA test (95% CI = 0.5-3.0, p = 0.006). Acetazolamide improved prothrombin time, factor X, and antithrombin. Clinical severity, epilepsy, and lipodystrophy predicted greater response. The randomized withdrawal phase showed ICARS worsening in the withdrawal group (effect size = 1.46, 95% CI = 2.65-7.52, p = 0.001). Interpretation: AZATAX is the first clinical trial of PMM2-CDG. Acetazolamide is well tolerated and effective for motor cerebellar syndrome. Its ability to prevent SLEs and its long-term effects on kidney function should be addressed in future studies. ANN NEUROL 2019;85:740-751 View this article online at wileyonlinelibrary.com.
Rett syndrome (RTT) is a severe neurological disorder usually caused by mutations in the MECP2 gene. Since the MECP2 gene is located on the X chromosome, X chromosome inactivation (XCI) could play a role in the wide range of phenotypic variation of RTT patients; however, classical methylation-based protocols to evaluate XCI could not determine whether the preferentially inactivated X chromosome carried the mutant or the wild-type allele. Therefore, we developed an allele-specific methylation-based assay to evaluate methylation at the loci of several recurrent MECP2 mutations. We analyzed the XCI patterns in the blood of 174 RTT patients, but we did not find a clear correlation between XCI and the clinical presentation. We also compared XCI in blood and brain cortex samples of two patients and found differences between XCI patterns in these tissues. However, RTT mainly being a neurological disease complicates the establishment of a correlation between the XCI in blood and the clinical presentation of the patients. Furthermore, we analyzed MECP2 transcript levels and found differences from the expected levels according to XCI. Many factors other than XCI could affect the RTT phenotype, which in combination could influence the clinical presentation of RTT patients to a greater extent than slight variations in the XCI pattern.
BackgroundWe aim to delineate the progression of cerebellar syndrome in children with phosphomannomutase-deficiency (PMM2-CDG) using the International Cooperative Ataxia Rating Scale (ICARS). We sought correlation between cerebellar volumetry and clinical situation. We prospectively evaluated PMM2-CDG patients aged from 5 to 18 years through ICARS at two different time points set apart by at least 20 months. We reviewed available MRIs and performed volumetric analysis when it was possible.ResultsFrom the eligible 24, four patients were excluded due to severe mental disability (n = 2) and supratentorial lesions (n = 2). Two different ICARS evaluations separated by more than 20 months were available for 14 patients showing an improvement in the cerebellar syndrome: ICARS1: 35.71 versus ICARS2: 30.07 (p < 0.001). When we considered time, we saw an improvement of 2.64 points in the ICARS per year with an SD of 1.97 points (p < 0.001). The ICARS subscales results improved with time, reaching statistical significance in “Posture and gait” (p < 0.001), “Kinetic functions” (p = 0.04) and “Speech abnormalities” (p = 0.045). We found a negative correlation between the ICARS results and total cerebellar volume (r = −0.9, p = 0.037) in a group of five patients with available volumetric study, meaning that the higher the ICARS score, the more severe was the cerebellar atrophy.ConclusionsOur study shows a stabilization or mild improvement in the cerebellar functions of paediatric PMM2-CDG patients despite cerebellar volume loss. ICARS is a valid scale to quantify the evolution of cerebellar syndrome in PMM2-CDG patients. The availability of ICARS and other reliable and sensitive follow-up tools may prove essential for the evaluation of potential therapies.Electronic supplementary materialThe online version of this article (10.1186/s13023-017-0707-0) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.