The linear nickel-nitrosyl complex [Ni(NO)(L3)] supported by a highly hindered tridentate nitrogen-based ligand, hydrotris(3-tertiary butyl-5-isopropyl-1-pyrazolyl)borate (denoted as L3), was prepared by the reaction of the potassium salt of the ligand with the nickel-nitrosyl precursor [Ni(NO)(Br)(PPh 3 ) 2 ]. The obtained nitrosyl complexes as well as the corresponding chlorido complexes [Ni(NO)(Cl)(PPh 3 ) 2 ] and [Ni(Cl)(L3)] were characterized by X-ray crystallography and different spectroscopic methods including IR/far-IR, UV-Vis, NMR, and multi-edge X-ray absorption spectroscopy at the Ni K-, Ni L-, Cl K-, and P K-edges. For comparative electronic structure analysis we also performed DFT calculations to further elucidate the electronic structure of [Ni(NO)(L3)]. These results provide the nickel oxidation state and the character of the Ni-NO bond. The complex [Ni(NO)(L3)] is best described as [Ni (II) (NO (-) )(L3)], and the spectroscopic results indicate that the phosphane complexes have a similar [Ni (II) (NO (-) )(X)(PPh 3 ) 2 ] ground state.
Tris(pyrazolyl)hydroborate ligands have been utilized in the fields of inorganic and coordination chemistry due to the ease of introduction of steric and electronic substitutions at the pyrazole rings. The development and use of the tris(pyrazolyl)hydroborate ligand, called a `scorpionate', were pioneered by the late Professor Swiatoslaw Trofimenko. He developed a second generation for his ligand system by the introduction of 3-tert-butyl and 3-phenyl substituents and this new ligand system accounted for many remarkable developments in inorganic and coordination chemistry in stabilizing monomeric species while maintaining an open coordination site. Bismuth is remarkably harmless among the toxic heavy metal p-block elements and is now becoming popular as a replacement for highly toxic metal elements, such as lead. Two bismuth(III) complexes of the anionic sulfur-containing tripod tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl)hydroborate ligand were prepared. By recrystallization from MeOH/CHCl, orange crystals of dichlorido(methanol-κO)[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III), [Bi(CHBNS)Cl(CHO)], (I), were obtained, manifesting a mononuclear structure. By using a noncoordinating solvent, red crystals of the binuclear structure with bridging Cl atoms were obtained, namely di-μ-chlorido-bis{chlorido[tris(3-tert-butyl-2-sulfanylidene-1H-imidazol-1-yl-κS)hydroborato]bismuth(III)}, [Bi(CHBNS)Cl], (II). These complexes show {BiSClO} and {BiSCl} coordination geometries with average Bi-S bond lengths of 2.73 and 2.78 Å in (I) and (II), respectively. The overall Bi coordination geometry is distorted octahedral due to stereochemically active lone pairs. The three Bi-S bond lengths are almost equal in (I) but show considerable differences in (II), with one long and two shorter distances that also correlate with changes in the UV-Vis and H NMR spectra. For direct measurements of the Bi-S/Cl coordination, ligand K-edge X-ray absorption measurements were carried out in combination with ground and excited-state electronic structure analyses. For p-block elements, these sulfur-containing ligands are useful for preparing the appropriate complexes due to their flexible coordination geometry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.