Reinforced Concrete (RC) frame buildings with shear wall are widely used in severe seismic zones. Shear walls are bearing system elements that provide the greatest resistance against horizontal force under the effect of earthquake, limit displacements and prevent torsions. A reinforced concrete shear wall is one of the most critical structural members in buildings, in terms of carrying lateral loads. However, irregular layouts cause to torsional irregularity in buildings. For this purpose, different shear wall frame reinforced concrete building models are designed. The model buildings have a regular formwork plan. The shear wall layout has different variations in each plan. These structure plans were mainly classified in two classes according to their torsional irregularities as structures with torsional irregularities and Structures with non-torsional irregularities. Artificial intelligence (AI) has revolu-tionized industries such as healthcare, agriculture, transportation, and education, as well as a variety of structural engineering problems. Artificial intelligence is transforming decision-making more easier and reshaping building design processes to be smarter and automated. Artificial intelligence technolo-gy of learning from an existing knowledge base is used to automate various civil engineering applica-tions such as compressive strength estimation of concrete, project pre-cost and duration, structural health monitoring, crack detection and more. In this study, it is aimed to determine the structures with torsional irregularity using artificial intelligence methods. Besides, the study is expected to introduce and demonstrate the capability of Artificial intelligence-based frameworks for future relevant studies within structural engineering applications and irregularities.
Günümüzde sürekli olarak ilerlemekte olan teknolojik gelişmeler ile yapay zeka hayatımızın vazgeçilmez bir parçası haline gelmiştir. Yapay sinir ağlarının kullanıldığı çalışma alanlarından birisi de ulaşımdır. Ulaşım alanında olası kazaların azaltılması amacıyla sürücü destek sistemleri uygulamalarında yapay zeka kullanılmaktadır. Bu çalışmada hem trafik işaret levhalarının fotoğraflarının çekilmesiyle bireysel olarak oluşturulan veri seti hem de açık kaynak erişimli internet sitesinden (kaggle.com) elde edilen veri seti olmak üzere toplamda 4000 adet trafik işaret levhası görüntüsüne ait resimlerden oluşan veri seti kullanılmıştır. Veri seti 3200 adet eğitim verisi ve 800 adet test verisi içermektedir. Hazırlanan veri setleri CNN (Evrişimli Sinir Ağları) modeliyle birlikte ResNet50, MobileNetV2 ve NASNetMobile olmak üzere üç farklı derin öğrenme metoduyla eğitilerek eğitim doğruluğu, test doğruluğu, eğitim kaybı ve test kaybı faktörlerine göre performansları değerlendirilmiştir. ResNet50 metoduyla eğitim doğruluğu %97.62, test doğruluğu %78.75, eğitim kaybı %0.1 ve test kaybı %6.28 olmuştur. MobileNetV2 metoduyla eğitim doğruluğu %97.8, test doğruluğu %48.12, eğitim kaybı %0.38 ve test kaybı %38.34 olmuştur. NASNetMobile metoduyla eğitim doğruluğu %98.56, test doğruluğu %41.56, eğitim kaybı %0.1 ve test kaybı %17.28 olmuştur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.