Navigating scientific challenges, persevering through difficulties, and coping with failure are considered hallmarks of a successful scientist. However, relatively few studies investigate how undergraduate science, technology, engineering, and mathematics (STEM) students develop these skills and dispositions or how instructors can facilitate this development in undergraduate STEM learning contexts. This is a critical gap, because the unique cultures and practices found in STEM classrooms are likely to influence how students approach challenges and deal with failures, both during their STEM education and in the years that follow. To guide research aimed at understanding how STEM students develop a challenge-engaging disposition and the ability to adaptively cope with failure, we generate a model representing hypotheses of how students might approach challenges and respond to failures in undergraduate STEM learning contexts. We draw from theory and studies investigating mindset, goal orientations, attributions, fear of failure, and coping to inform our model. We offer this model as a tool for the community to test, revise, elaborate, or refute. Finally, we urge researchers and educators to consider the development, implementation, and rigorous testing of interventions aimed at helping students develop a persevering and challenge-engaging disposition within STEM contexts.
Background The ability to navigate obstacles and embrace iteration following failure is a hallmark of a scientific disposition and is hypothesized to increase students’ persistence in science, technology, engineering, and mathematics (STEM). However, this ability is often not explicitly explored or addressed by STEM instructors. Recent collective interest brought together STEM instructors, psychologists, and education researchers through the National Science Foundation (NSF) research collaborative Factors affecting Learning, Attitudes, and Mindsets in Education network (FLAMEnet) to investigate intrapersonal elements (e.g., individual differences, affect, motivation) that may influence students’ STEM persistence. One such element is fear of failure (FF), a complex interplay of emotion and cognition occurring when a student believes they may not be able to meet the needs of an achievement context. A validated measure for assessing FF, the Performance Failure Appraisal Inventory (PFAI) exists in the psychological literature. However, this measure was validated in community, athletic, and general undergraduate samples, which may not accurately reflect the motivations, experiences, and diversity of undergraduate STEM students. Given the potential role of FF in STEM student persistence and motivation, we felt it important to determine if this measure accurately assessed FF for STEM undergraduates, and if not, how we could improve upon or adapt it for this purpose. Results Using exploratory and confirmatory factor analysis and cognitive interviews, we re-validated the PFAI with a sample of undergraduates enrolled in STEM courses, primarily introductory biology and chemistry. Results indicate that a modified 15-item four-factor structure is more appropriate for assessing levels of FF in STEM students, particularly among those from groups underrepresented in STEM. Conclusions In addition to presenting an alternate factor structure, our data suggest that using the original form of the PFAI measure may significantly misrepresent levels of FF in the STEM context. This paper details our collaborative validation process and discusses implications of the results for choosing, using, and interpreting psychological assessment tools within STEM undergraduate populations.
Teaching professional development (TPD) efforts to reform undergraduate education will not meet their goals if instructors are not motivated to attend. Research on psychosocial interventions could be leveraged to design interventions that will increase instructors’ motivation to attend TPD.
Background As technology moves rapidly forward and our world becomes more interconnected, we are seeing increases in the complexity and challenge associated with scientific problems. More than ever before, scientists will need to be resilient and able to cope with challenges and failures en route to success. However, we still understand relatively little about how these skills manifest in STEM contexts broadly, and how they are developed by STEM undergraduate students. While recent studies have begun to explore this area, no measures exist that are specifically designed to assess coping behaviors in STEM undergraduate contexts at scale. Fortunately, multiple measures of coping do exist and have been previously used in more general contexts. Drawing strongly from items used in the COPE and Brief COPE, we gathered a pool of items anticipated to be good measures of undergraduate students’ coping behaviors in STEM. We tested the validity of these items for use with STEM students using exploratory factor analyses, confirmatory factor analyses, and cognitive interviews. In particular, our confirmatory factor analyses and cognitive interviews explored whether the items measured coping for persons excluded due to ethnicity or race (PEERs). Results Our analyses revealed two versions of what we call the STEM-COPE instrument that accurately measure several dimensions of coping for undergraduate STEM students. One version is more fine-grained. We call this the Coping Behaviors version, since it is more specific in its description of coping actions. The other contains some specific scales and two omnibus scales that describe what we call challenge-engaging and challenge-avoiding coping. This version is designated the Coping Styles version. We confirmed that both versions can be used reliably in PEER and non-PEER populations. Conclusions The final products of our work are two versions of the STEM-COPE. Each version measures several dimensions of coping that can be used in individual classrooms or across contexts to assess STEM undergraduate students’ coping with challenges or failures. Each version can be used as a whole, or individual scales can be adopted and used for more specific studies. This work also highlights the need to either develop or adapt other existing measures for use with undergraduate STEM students, and more specifically, for use with sub-populations within STEM who have been historically marginalized or minoritized.
This report provides a broad overview of the 2019 Undergraduate Biology Education Research Gordon Research Conference, titled “Achieving Widespread Improvement in Undergraduate Education,” and the associated Gordon Research Seminar, highlighting major themes that cut across invited talks, poster presentations, and informal discussions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.