We report a novel method for measurement of the oxygen isotopic composition (18O/16O) of nitrate (NO3-) from both seawater and freshwater. The denitrifier method, based on the isotope ratio analysis of nitrous oxide generated from sample nitrate by cultured denitrifying bacteria, has been described elsewhere for its use in nitrogen isotope ratio (15N/14N) analysis of nitrate. (1) Here, we address the additional issues associated with 18O/16O analysis of nitrate by this approach, which include (1) the oxygen isotopic difference between the nitrate sample and the N20 analyte due to isotopic fractionation associated with the loss of oxygen atoms from nitrate and (2) the exchange of oxygen atoms with water during the conversion of nitrate to N2O. Experiments with 18O-labeled water indicate that water exchange contributes less than 10%, and frequently less than 3%, of the oxygen atoms in the N20 product for Pseudomonas aureofaciens. In addition, both oxygen isotope fractionation and oxygen atom exchange are consistent within a given batch of analyses. The analysis of appropriate isotopic reference materials can thus be used to correct the measured 18O/16O ratios of samples for both effects. This is the first method tested for 18O/16O analysis of nitrate in seawater. Benefits of this method, relative to published freshwater methods, include higher sensitivity (tested down to 10 nmol and 1 microM NO3-), lack of interference by other solutes, and ease of sample preparation.
Interaction with ozone transfers its anomalous (non-mass-dependent) 17O enrichment to atmospheric nitrogen oxides and nitrate. The 17O anomaly (Delta17O) in nitrate can be used to identify atmospheric nitrate inputs into terrestrial and aquatic environments as well as to study the role of ozone in the atmosphere's reactive nitrogen cycle. We report here on an online method for analysis of the 17O anomaly, using a strain of denitrifiers to convert nitrate to N2O, which decomposes quantitatively to N2 and O2 in a gold furnace at 800 degrees C, followed by gas chromatographic separation and isotope analysis of O2. This method requires approximately 50 nmol of nitrate, 2-3 orders of magnitude less than previous offline thermal decomposition methods to achieve a similar analytical precision of 0.5 per thousand for Delta17O. There is no significant memory effect, but calibration via nitrate or N2O reference materials is required for scale normalization. The N2O decomposition method is shown to be well-suited for nitrate analysis in freshwater and seawater samples from various environments.
O/ 16 O in the warm season and in cool season air masses from the south is consistent with elevated concentrations of hydroxyl radical (OH), which dilutes the isotopic signal of ozone. Our limited data set suggests that the relative importance of the OH sink for NO x during the cool season varies spatially over as large a range as is observed between the warm and cool seasons.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.