Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a role in vivo has not been shown. We test whether loss of gap-junction coupling disrupts plasma insulin oscillations and whether this impacts glucose tolerance. We characterized the connexin-36 knockout (Cx36−/−) mouse phenotype and performed hyperglycemic clamps with rapid sampling of insulin in Cx36−/− and control mice. Our results show that Cx36−/− mice are glucose intolerant, despite normal plasma insulin levels and insulin sensitivity. However, Cx36−/− mice exhibit reduced insulin pulse amplitudes and a reduction in first-phase insulin secretion. These changes are similarly found in isolated Cx36−/− islets. We conclude that Cx36 gap junctions regulate the in vivo dynamics of insulin secretion, which in turn is important for glucose homeostasis. Coordinated pulsatility of individual islets enhances the first-phase elevation and second-phase pulses of insulin. Because these dynamics are disrupted in the early stages of type 2 diabetes, dysregulation of gap-junction coupling could be an important factor in the development of this disease.
Pure hair and nail ectodermal dysplasia (PHNED) is a rare disorder that presents with hypotrichosis and nail dystrophy while sparing other ectodermal structures such as teeth and sweat glands. We describe a homozygous novel missense mutation in the HOXC13 gene that resulted in autosomal recessive PHNED in a Hispanic child. The mutation c.812A>G (p.Gln271Arg) is located within the DNA-binding domain of the HOXC13 gene, cosegregates within the family, and is predicted to be maximally damaging. This is the first reported case of a missense HOXC13 mutation resulting in PHNED and the first reported case of PHNED identified in a North American family. Our findings illustrate the critical role of HOXC13 in human hair and nail development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.