Oxidative stress (OS) has been implicated in the causation of environmentally-induced diseases. However, the role of toxicants in the pathophysiology of disorders and diseases affecting the reproductive system are less understood. This review focuses on some of the mechanisms that underlie OS-induced reproductive toxicity at the cellular- and organ levels (germ cell damage and perturbed organ responses to endocrine stimuli). While most of the reproductive and developmental studies conducted in adult animals and transgenerational adult animals point to the involvement of genotoxicity, the part played by epigenetic alterations is accorded a recent recognition, thus warranting more studies in this area. Additionally, metabolomic, proteomic and transcriptomic approaches need to be employed to advance our understanding of key metabolites formed and the expression of anti-OS genes at the molecular level that are necessary for combating reactive oxygen species formation. The resulting data could be analyzed using bioinformatics tools to identify the pathways linked to disease causation and as a consequence, the adoption of therapeutic strategies, including but not limited to administering phytochemicals (many of which possess antioxidant properties) to improve disease outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.