Earthworm metabolism is recognized as a useful tool for monitoring environmental insults and measuring ecotoxicity, yet extensive earthworm metabolic profiling using 1H nuclear magnetic resonance (NMR) spectroscopy has been limited in scope. This study aims to expand the embedded metabolic material in earthworm coelomic fluid, coelomocytes, and tissue to aid systems toxicology research. Fifty-nine metabolites within Eisenia fetida were identified, with 47 detected in coelomic fluid, 41 in coelomocytes, and 54 in whole-worm samples and tissue extracts. The newly detected but known metabolites 2-aminobutyrate, nicotinurate, Nδ,Nδ,Nδ-trimethylornithine, and trigonelline are reported along with a novel compound, malylglutamate, elucidated using 2D NMR and high-resolution MS/MS. We postulate that malylglutamate acts as a glutamate/malate store, chelator, and anionic osmolyte and helps to provide electrolyte balance.
The capacity of the colon to absorb microbially produced amino acids (AAs) and the underlying mechanisms of AA transport are incompletely defined. We measured the profile of 16 fecal AAs along the rat ceco-colonic axis and compared unidirectional absorptive AA fluxes across mucosal tissues isolated from the rat jejunum, cecum, and proximal colon using an Ussing chamber approach, in conjunction with 1H-NMR and ultra-performance liquid chromatography-mass spectrometry chemical analyses. Passage of stool from cecum to midcolon was associated with segment-specific changes in fecal AA composition and a decrease in total AA content. Simultaneous measurement of up to 16 AA fluxes under native luminal conditions, with correction for endogenous AA release, demonstrated absorptive transfer of AAs across the cecum and proximal colon at rates comparable (30–80%) to those across the jejunum, with significant Na+-dependent and H+-stimulated components. Expression profiling of 30 major AA transporter genes by quantitative PCR revealed comparatively high levels of transcripts for 20 AA transporters in the cecum and/or colon, with the levels of 12 exceeding those in the small intestine. Our results suggest a more detailed model of major apical and basolateral AA transporters in rat colonocytes and provide evidence for a previously unappreciated transfer of AAs across the colonic epithelium that could link the prodigious metabolic capacities of the luminal microbiota, the colonocytes, and the body tissues. NEW & NOTEWORTHY This study provides evidence for a previously unappreciated transfer of microbially generated amino acids across the colonic epithelium under physiological conditions that could link the prodigious metabolic capacities of the luminal microbiota, the colonocytes, and the body tissues. The segment-specific expression of at least 20 amino acid transporter genes along the colon provides a detailed mechanistic basis for uniport, heteroexchange, Na+-cotransport, and H+-cotransport components of colonic amino acid absorption.
Earthworms ( Eisenia fetida) are vital members of the soil environment. Because of their sensitivity to many contaminants, monitoring earthworm metabolism may be a useful indicator of environmental stressors. Here, metabolic profiles of exposure to five chloroacetanilide herbicides and one enantiomer (acetochlor, alachlor, butachlor, racemic metolachlor, S-metolachlor, and propachlor) are observed in earthworm coelomic fluid using proton nuclear magnetic resonance spectroscopy (NMR) and gas chromatography-mass spectrometry (GC-MS). Multiblocked-orthogonal partial least-squares-discriminant analysis (MB-OPLS-DA) and univariate analysis were used to identify metabolic perturbations in carnitine biosynthesis, carbohydrate metabolism, lipid metabolism, nitrogen metabolism, and the tricarboxylic acid cycle. Intriguingly, stereospecific metabolic responses were observed between racemic metolachlor and S-metolachlor exposed worms. These findings support the utility of coelomic fluid in monitoring metabolic perturbations induced by chloroacetanilide herbicides in nontarget organisms and reveal specificity in the metabolic impacts of herbicide analogues in earthworms.
The anticoagulant properties of heparin stem in part from high-affinity binding to antithrombin-III (AT-III) inducing a 300-fold increase in its inhibitory activity against the coagulation protease factor Xa. The minimal structural requirements for AT-III binding are contained in the rare heparin pentasaccharide sequence containing a 3,6-O-sulfated N-sulfoglucosamine residue. ACE is used in this work to measure the relative AT-III binding affinities of the low molecular weight heparins (LWMHs) dalteparin, enoxaparin, and tinzaparin and the synthetic pentasaccharide drug fondaparinux (Arixtra). Determination of the AT-III binding affinities of the LWMHs is complicated by their inherent structural heterogeneity and polydispersity. The fractional composition of 3-O-sulfo-N-sulfoglucosamine residues was determined for each drug substance using 2D NMR and used in the interpretation of the ACE results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.