Some tick-borne agents may pose yet-unknown public health risks.
Previous studies on DNA damage and repair have involved in vitro laboratory procedures that induce a single type of lesion in naked templates. Although repair of singular, sequestered types of DNA damage has shown some success, forensic and ancient specimens likely contain a number of different types of lesions. This study sought to (1) develop protocols to damage DNA in its native state, (2) generate a pool of candidate samples for repair that more likely emulate authentic forensic samples, and (3) assess the ability of the PreCR(TM) Repair Mix to repair the resultant lesions. Complexed, native DNA is more difficult to damage than naked DNA. Modified procedures included the use of higher concentrations and longer exposure times. Three types of samples, those that demonstrated damage based on short tandem repeat (STR) profile signals, were selected for repair experiments: environmentally damaged bloodstains, bleach-damaged whole blood, and human skeletal remains. Results showed trends of improved performance of STR profiling of bleach-damaged DNA. However, the repair assay did not improve DNA profiles from environmentally damaged bloodstains or bone, and in some cases resulted in lower RFU values for STR alleles. The extensive spectrum of DNA damage and myriad combinations of lesions that can be present in forensic samples appears to pose a challenge for the in vitro PreCR(TM) assay. The data suggest that the use of PreCR in casework should be considered with caution due to the assay's varied results.
Formalin fixation is commonly used to preserve tissue sections for pathological testing and embalming cadavers for medical dissection or burial. DNA extracted from formalin-fixed tissues may also provide an alternative source of genetic material for medical diagnosis and forensic casework, such as identifying unknown embalmed human remains. Formaldehyde causes DNA damage, chemical modifications, and degradation, thereby reducing the quantity and quality of DNA available for downstream genetic analyses. By comparing the DNA yield, level of DNA degradation, and short tandem repeat (STR) success of various tissue types, this study is the first of its kind to provide some guidance on which samples from embalmed bodies are likely to generate more complete STR profiles. Tissue samples were dissected from three male embalmed cadavers and included bone, cartilage, hair, muscle, internal organs, skin, teeth, and nail clippings. DNA was purified from all samples using the QIAamp® FFPE Tissue Kit (Qiagen), quantified using the QuantiFiler® Trio DNA Quantification kit (Life Technologies), and genotyped using the GlobalFiler® PCR Amplification Kit (Life Technologies). Results of this study showed variation in DNA quantity and STR success between different types of tissues and some variation between cadavers. Overall, bone marrow samples resulted in the highest DNA yields, the least DNA degradation, and greatest STR success. However, several muscle, hair, and nail samples generated higher STR success rates than traditionally harvested bone and tooth samples. A key advantage to preferentially using these tissue samples over bone (and marrow) and teeth is their comparative ease and speed of collection from the cadaver and processing during DNA extraction. Results also indicate that soft tissues affected by lividity (blood pooling) may experience greater exposure to formalin, resulting in more DNA damage and reduced downstream STR success than tissues under compression. Overall, we recommend harvesting from selected muscles (gastrocnemius, rectus femoris, flexor digitorum brevis, masseter, brachioradialis) or fingernails for human identification purposes.
Forensic and ancient DNA samples often are damaged and in limited quantity as a result of exposure to harsh environments and the passage of time. Several strategies have been proposed to address the challenges posed by degraded and low copy templates, including a PCR based whole genome amplification method called degenerate oligonucleotide-primed PCR (DOP-PCR). This study assessed the efficacy of four modified versions of the original DOP-PCR primer that retain at least a portion of the 5' defined sequence and alter the number of bases on the 3' end. The use of each of the four modified primers resulted in improved STR profiles from environmentally-damaged bloodstains, contemporary human skeletal remains, American Civil War era bone samples, and skeletal remains of WWII soldiers over those obtained by previously described DOP-PCR methods and routine STR typing. Additionally, the modified DOP-PCR procedure allows for a larger volume of DNA extract to be used, reducing the need to concentrate the sample and thus mitigating the effects of concurrent concentration of inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.