Electrolyte additives have been widely used to address critical issues in current metal (ion) battery technologies. While their functions as solid electrolyte interface forming agents are reasonably well‐understood, their interactions in the liquid electrolyte environment remain rather elusive. This lack of knowledge represents a significant bottleneck that hinders the development of improved electrolyte systems. Here, the key role of additives in promoting cation (e.g., Li+) desolvation is unraveled. In particular, nitrate anions (NO3−) are found to incorporate into the solvation shells, change the local environment of cations (e.g., Li+) as well as their coordination in the electrolytes. The combination of these effects leads to effective Li+ desolvation and enhanced battery performance. Remarkably, the inexpensive NaNO3 can successfully substitute the widely used LiNO3 offering superior long‐term stability of Li+ (de‐)intercalation at the graphite anode and suppressed polysulfide shuttle effect at the sulfur cathode, while enhancing the performance of lithium–sulfur full batteries (initial capacity of 1153 mAh g−1 at 0.25C) with Coulombic efficiency of ≈100% over 300 cycles. This work provides important new insights into the unexplored effects of additives and paves the way to developing improved electrolytes for electrochemical energy storage applications.
The photoelectrochemical (PEC) approach is attractive as a promising route for the nitrogen reduction reaction (NRR) toward ammonia (NH3) synthesis. However, the challenges in synergistic management of optical, electrical, and catalytic properties have limited the efficiency of PEC NRR devices. Herein, to enhance light‐harvesting, carrier separation/transport, and the catalytic reactions, a concept of decoupling light‐harvesting and electrocatalysis by employing a cascade n+np+‐Si photocathode is implemented. Such a decoupling design not only abolishes the parasitic light blocking but also concurrently improves the optical and electrical properties of the n+np+‐Si photocathode without compromising the efficiency. Experimental and density functional theory studies reveal that the porous architecture and N‐vacancies promote N2 adsorption of the Au/porous carbon nitride (PCN) catalyst. Impressively, an n+np+‐Si photocathode integrating the Au/PCN catalyst exhibits an outstanding PEC NRR performance with maximum Faradaic efficiency (FE) of 61.8% and NH3 production yield of 13.8 µg h–1 cm–2 at −0.10 V versus reversible hydrogen electrode (RHE), which is the highest FE at low applied potential ever reported for the PEC NRR.
Design and development
of an efficient, nonprecious catalyst with
structural features and functionality necessary for driving the hydrogen
evolution reaction (HER) in an alkaline medium remain a formidable
challenge. At the root of the functional limitation is the inability
to tune the active catalytic sites while overcoming the poor reaction
kinetics observed under basic conditions. Herein, we report a facile
approach to enable the selective design of an electrochemically efficient
cobalt phosphide oxide composite catalyst on carbon cloth (CoP-Co
x
O
y
/CC), with
good activity and durability toward HER in alkaline medium (η
10
= −43 mV). Theoretical studies revealed that the
redistribution of electrons at laterally dispersed Co phosphide/oxide
interfaces gives rise to a synergistic effect in the heterostructured
composite, by which various Co oxide phases initiate the dissociation
of the alkaline water molecule. Meanwhile, the highly active CoP further
facilitates the adsorption–desorption process of water electrolysis,
leading to extremely high HER activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.