Meningitis is the main infectious central nervous system (CNS) syndrome. Viruses or bacteria can cause acute meningitis of infectious etiology. The term "Aseptic Meningitis" denotes a clinical syndrome with a predominance of lymphocytes in the cerebrospinal fluid (CSF), with no common bacterial agents identified in the CSF. Viral meningitis is considered the main cause of lymphocyte meningitis. There are other etiologies of an infectious nature. CSF examination is essential to establish the diagnosis and to identify the etiological agent of lymphocytic meningitis. We examined CSF characteristics and the differential diagnosis of the main types of meningitis.
COVID‐19, caused by the SARS‐CoV‐2 virus, has become a significant global public health problem, with a wide variety of clinical manifestations and disease progression outcomes. LncRNAs are key regulators of the immune response and have been associated with COVID‐19 risk infection. Previous studies focused mainly on in‐silico analysis of lncRNA expression in the lungs or peripheral blood cells. We evaluated the expression of lncRNAs NEAT1, MALAT1, and MIR3142 in saliva and nasopharyngeal swab from SARS‐CoV‐2 positive (n = 34) and negative patients (n = 46). A higher expression of the lncRNAs NEAT1 and MALAT1 (p < 0.05) were found in positive samples. NEAT1 had a higher expression mainly in saliva samples (p < 0.001), and MALAT1 was upregulated in nasopharyngeal samples (p < 0.05). Area under the ROC curve for NEAT1 in saliva was 0.8067. This study was the first to investigate the expression of lncRNAs in saliva and nasopharyngeal samples of COVID‐19 patients, which gives new insights into the initial response to infection and infectivity and may provide new biomarkers for severity and targets for therapy.
SARS-CoV-2 environmental monitoring can track the rate of viral contamination and can be used to establish preventive measures. This study aimed to detect by RT-PCR the presence of SARS-CoV-2 from inert surface samples in public health settings with a literature review about surface contamination and its burden on spread virus. Samples were collected from health settings in Curitiba, Brazil, between July and December 2020. A literature review was conducted using PRISMA. A total of 711 environmental surface samples were collected from outpatient areas, dental units, doctors’ offices, COVID-19 evaluation areas, and hospital units, of which 35 (4.9%) were positive for SARS-CoV-2 RNA. The frequency of environmental contamination was higher in primary care units than in hospital settings. The virus was detected on doctors’ personal items. Remarkably, the previously disinfected dental chair samples tested positive. These findings agree with those of other studies in which SARS-CoV-2 was found on inanimate surfaces. Detection of SARS-CoV-2 RNA on surfaces in public health settings, including those not meant to treat COVID-19, indicates widespread environmental contamination. Therefore, the intensification of disinfection measures for external hospital areas may be important for controlling community COVID-19 dissemination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.