The electromagnetic properties of scroll microcoils are investigated with finite element modelling (FEM) and the design of experiment (DOE) approach. The design of scroll microcoils was optimized for nuclear magnetic resonance (NMR) spectroscopy of nanoliter and subnanoliter sample volumes. The unusual proximity effect favours optimised scroll microcoils with a large number of turns rolled up in close proximity. Scroll microcoils have many advantages over microsolenoids: such as ease of fabrication and better B1-homogeneity for comparable intrinsic signal-to-noise ratio (SNR). Scroll coils are suitable for broadband multinuclei NMR spectroscopy of subnanoliter sample.
Abstract:In this paper, we describe the fabrication of miniaturized flexible Radio frequency RF microcoil for Nuclear Magnetic Resonance (NMR), which have been constructed based on Micro Electro Mechanical Systems (MEMS) technology. 3D Electromagnetic numerical simulations of the physical properties of this microcoil were conducted using Multiphysics software. Numerical simulation shows that the rectangular microantenna (500 × 1000 µm 2 ) on kapton substrate has efficient results in terms of magnetic field, inductance, magnetic energy and resistive losses. This micro-coil is fabricated with three mask levels on polyimide substrate using micromoulding technology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.