Although ecosystems respond to global change at regional to continental scales (i.e., macroscales), model predictions of ecosystem responses often rely on data from targeted monitoring of a small proportion of sampled ecosystems within a particular geographic area. In this study, we examined how the sampling strategy used to collect data for such models influences predictive performance. We subsampled a large and spatially extensive data set to investigate how macroscale sampling strategy affects prediction of ecosystem characteristics in 6,784 lakes across a 1.8‐million‐km2 area. We estimated model predictive performance for different subsets of the data set to mimic three common sampling strategies for collecting observations of ecosystem characteristics: random sampling design, stratified random sampling design, and targeted sampling. We found that sampling strategy influenced model predictive performance such that (1) stratified random sampling designs did not improve predictive performance compared to simple random sampling designs and (2) although one of the scenarios that mimicked targeted (non‐random) sampling had the poorest performing predictive models, the other targeted sampling scenarios resulted in models with similar predictive performance to that of the random sampling scenarios. Our results suggest that although potential biases in data sets from some forms of targeted sampling may limit predictive performance, compiling existing spatially extensive data sets can result in models with good predictive performance that may inform a wide range of science questions and policy goals related to global change.
Aquatic scientists require robust, accurate information about nutrient concentrations and indicators of algal biomass in unsampled lakes in order to understand and predict the effects of global climate and land‐use change. Historically, lake and landscape characteristics have been used as predictor variables in regression models to generate nutrient predictions, but often with significant uncertainty. An alternative approach to improve predictions is to leverage the observed relationship between water clarity and nutrients, which is possible because water clarity is more commonly measured than lake nutrients. We used a joint‐nutrient model that conditioned predictions of total phosphorus, nitrogen, and chlorophyll a on observed water clarity. Our results demonstrated substantial reductions (8–27%; median = 23%) in prediction error when conditioning on water clarity. These models will provide new opportunities for predicting nutrient concentrations of unsampled lakes across broad spatial scales with reduced uncertainty.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.