The scarcity of building materials and the shortage of coarse aggregates which represents the main component of concrete is a problem in the most third world countries, especially in the vast desert areas in Algeria. In desert conditions where the environment suffers from the phenomenon of rising water and aggressive soil; the evaluation of existing abundant Sand Dune and its compensation for naturel Sand could be a very good economic solution. Several researches at the local and the global levels confirm that Sand Dune can be exploited in concrete after a granular correction. In this paper, a new Sand resource (Oued El-Ratm, El Oued-Algeria) is proposed as an alternative of natural Sand to perform a Sand Concrete. The findings of this experimental study show that the Sand Concrete based on this new resource of sand dune of the Algerian desert has a good resistance when used in the ambient Saharan aggressive conditions.
The development and research of a new formulation of concrete integrating natural resources such as sands (from dunes and/or quarries) as well as waste from steel factories in the form of granulated slag from blast furnaces lead to the development of new sand concretes for which the improvement of specific properties will lead to a search for an agreement between production cost and performance. The objective of this research is to study the influence of the dosage of the size of the largest aggregate on the workability of sand concretes as well as on the compressive strength at 7 days, 14 days and 28 days. Five types of concrete are made by substituting aggregates (dune sand and quarry sand) with each other and with different percentages (100%, 75%, 50%, 25% and 0%). The results show that the workability of fresh concrete is considerably influenced by the nature of the sand; the richer the sand in coarse elements, the fineness modulus increases and the more handling improves. In the hardened state, the results show that optimization of the compressive strength is achieved when a good homogeneity of the concrete is achieved and when a large percentage of coarse sand is mixed with a small percentage of fine sand.
The purpose of this study is to discuss which constitutive law can describes at best the observed behavior of Silt and Gravelly Clay on the basis of experimental and analytical results. To find numerical solution for saturated soils in oedometer test Plaxis 2D the finite element software was used. In order to obtain the compressibility, excess pore pressure and degree of consolidation curves; two constitutive laws were used in this work: the Soft Soil Model ‘SSM’ and the Modified Cam Clay Model ‘MCC’. Predicted results were found in good agreement with measurements obtained from experimental test and analytical solutions. The Soft Soil is in good agreement with experimental results in the compressibility curve; however the Modified Cam Clay Model is the most appropriate if compared with the analytical solution.
The Brazilian Test is the most used test to determine the indirect tensile strength for brittle materials like concrete. It has been observed that the success of the test depends on the cracks initiation point position and therefore the arch loading angle; a crack appears in the center of the disk when the test is valid. To this effect, the main objective of this work was using Fast Lagrangian of Continua code FLAC2D; numerical analyses were performed to study the impact of the arch loading angle on the initial crack’s position in a 70 mm diameter Brazilian disk of concrete and mortar under loading arch 2α which varies from 5–45°. The distribution of stresses and the tensile strength at the center of the Brazilian disk obtained numerically was closely similar to analytical and experimental existing solutions. The results showed that to obtain a meaningful and validated test with the most accurate indirect tensile strength, it is recommended to take a loading arch 2α ≥ 20° for the concrete and 2α ≥ 10° for the mortar.
The oedometric test is a test widely used in civil engineering. The main objective of this article has been to investigate the primary consolidation behaviour of the intact soil samples by comparing the results obtained from finite element analysis computations in PlAXIS2D with the experimental result of the soil samples obtained from the site of the Al-Ahdab oil field in the east of Iraq. Three different material models were utilized during the finite element analysis, comparing the performance of the more advanced constitutive Soft Soil material model against the modified Cam Clay and Mohr-Coulomb material models. Numerical results of Oedomter test show that the Soft Soil model behaviour is the most appropriate model to describe the observed behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.