Effect of the annealing oxidation time of electrodeposited lead (Pb) on the phase formation of lead oxide (PbO) films is reported. The phase structure, optical properties, size and morphology of the films were investigated by scanning electron microscopy, X-ray diffraction and UV-vis spectroscopy. The relationship between structur and photoelectrochemical properties was investigated. Thin films of PbO produced via air annealing of electrodeposited lead consist of a mixture of two phases, orthorhombic (o-PbO) and tetragonal (t-PbO), that determine the material properties and effectiveness as absorber layer in a photoelectrochemical device. The proportion of tetragonal t-PbO increases for longer heat treatments. After 40 h, the sample consists mainly of tetragonal t-PbO. The p-type semiconducting behavior of lead oxide was studied by photocurrent measurements. Different heat treatments yield variations in the ratio of tetragonal to orthorhombic lead oxide that effect on device performances, where devices with a higher content of tetragonal t-PbO show higher photocurrent than with the orthorhombic phase.
Zinc oxide (ZnO) thin films were synthesized on ITO glass substrates by electrochemical deposition from a nitrate solution. The deposition potential, bath temperature and annealing temperature were fixed at −1.1 V versus SCE, 80 and 400 °C, respectively. Firstly, we prepared the ZnO thin films by two different electrochemical methods: direct (DE) and pulsed electrodeposition (PE). The results indicate that pulse electrodeposition improves the properties of ZnO thin films compared to direct electrodeposition technique. Secondly, we chose the PE method for the elaboration of ZnO thin films and we varied the time-On (ton) from 7 to 1 s. Deposited ZnO thin films were characterized using XRD, SEM, optical and photocurrent measurement. X-ray diffraction results indicate that the synthesized ZnO has a pure hexagonal wurtzite structure with a marked preferential orientation along the (002) plane perpendicular to the substrate. SEM analysis reveals that the electrodeposited nanosheets at time-On of 7 s are only hexagonal. A remarkable change in ZnO morphology from nanosheets to nanosheets/nanorods and decrease in gap energy is observed with the decrease in electrodeposition time-On. After optimization in electrodeposition time (ton), a significant improvement in photocurrent and Methylene Blue (MB) photoelectrocatalytical degradation were observed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.