In this paper, a numerical study of forced convection on a backward facing step containing a single-finned fixed cylinder has been performed, using a ferrofluid and external magnetic field with different inclinations. The partial differential equations, which determine the conservation equations for mass, momentum and energy, were solved using the finite element scheme based on Galerkin’s method. The analysis of heat transfer characteristics by forced convection was made by taking different values of the Reynolds number (Re between 10 and 100), Hartmann number (Ha between 0 and 100), nanoparticles concentration (φ between 0 and 0.1) and magnetic field inclination (γ between 0° and 90°); also, several fin positions α [0°–180°] were taken in the counter clockwise direction by a step of 5. After analysing the results, we concluded that Hartmann number, nanoparticles concentration, Reynolds number and magnetic field angles have an influence on the heat transfer rate. However, the fin position on the cylinder has a big impact on the Nusselt number and therefore on heat transfer quality. The best position of the fin is at (α = 150°), which gives the best Nusselt number and therefore the best heat transfer, but the fin position at (α = 0°) remains an unfavourable case that gives the lowest Nusselt values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.