Major ampullate (MA) spider silk has fascinating mechanical properties combining strength and elasticity. All known natural MA silks contain at least two or more different spidroins; however, it is unknown why and if there is any interplay in the spinning dope. Here, two different spidroins from Araneus diadematus are co‐produced in Escherichia coli to study the possible dimerization and effects thereof on the mechanical properties of fibers. During the production of the two spidroins, a mixture of homo‐ and heterodimers is formed triggered by the carboxyl‐terminal domains. Interestingly, homodimeric species of the individual spidroins self‐assemble differently in comparison to heterodimers, and stoichiometric mixtures of homo‐ and heterodimers yield spidroin networks upon assembly with huge impact on fiber mechanics upon spinning. The obtained results provide the basis for man‐made tuning of spinning dopes to yield high‐performance fibers.
Producing recombinant spider silk fibers that exhibit mechanical properties approaching native spider silk is highly dependent on the constitution of the spinning dope. Previously published work has shown that recombinant spider silk fibers spun from dopes with phosphate-induced pre-assembly (biomimetic dopes) display a toughness approaching native spider silks far exceeding the mechanical properties of fibers spun from dopes without pre-assembly (classical dopes). Dynamic light scattering experiments comparing the two dopes reveal that biomimetic dope displays a systematic increase in assembly size over time, while light microscopy indicates liquid−liquid-phase separation (LLPS) as evidenced by the formation of micron-scale liquid droplets. Solution nuclear magnetic resonance (NMR) shows that the structural state in classical and biomimetic dopes displays a general random coil conformation in both cases; however, some subtle but distinct differences are observed, including a more ordered state for the biomimetic dope and small chemical shift perturbations indicating differences in hydrogen bonding of the protein in the different dopes with notable changes occurring for Tyr residues. Solid-state NMR demonstrates that the final wet-spun fibers from the two dopes display no structural differences of the poly(Ala) stretches, but biomimetic fibers display a significant difference in Tyr ring packing in non-β-sheet, disordered helical domains that can be traced back to differences in dope preparations. It is concluded that phosphate pre-orders the recombinant silk protein in biomimetic dopes resulting in LLPS and fibers that exhibit vastly improved toughness that could be due to aromatic ring packing differences in non-βsheet domains that contain Tyr.
Major ampullate (MA) spider silk reveals outstanding mechanical properties in terms of a unique combination of high tensile strength and extensibility, unmatched by most other known native or synthetic fiber materials. MA silk contains at least two spider silk proteins (spidroins), and here, a novel two-in-one (TIO) spidroin was engineered, resembling amino acid sequences of such two of the European garden spider. The combination of mechanical and chemical features of both underlying proteins facilitated the hierarchical self-assembly into β-sheet-rich superstructures. Due to the presence of native terminal dimerization domains, highly concentrated aqueous spinning dopes could be prepared from recombinant TIO spidroins. Subsequently, fibers were spun in a biomimetic, aqueous wet-spinning process, yielding mechanical properties at least twice as high as fibers spun from individual spidroins or blends. The presented processing route holds great potential for future applications using ecological green high-performance fibers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.