Other than exposure to gluten and genetic compatibility, the gut microbiome has been suggested to be involved in celiac disease (CD) pathogenesis by mediating interactions between gluten/environmental factors and the host immune system. However, to establish disease progression markers, it is essential to assess alterations in the gut microbiota before disease onset. Here, a prospective metagenomic analysis of the gut microbiota of infants at risk of CD was done to track shifts in the microbiota before CD development. We performed cross-sectional and longitudinal analyses of gut microbiota, functional pathways, and metabolites, starting from 18 mo before CD onset, in 10 infants who developed CD and 10 matched nonaffected infants. Cross-sectional analysis at CD onset identified altered abundance of six microbial strains and several metabolites between cases and controls but no change in microbial species or pathway abundance. Conversely, results of longitudinal analysis revealed several microbial species/strains/pathways/metabolites occurring in increased abundance and detected before CD onset. These had previously been linked to autoimmune and inflammatory conditions (e.g., Dialister invisus, Parabacteroides sp., Lachnospiraceae, tryptophan metabolism, and metabolites serine and threonine). Others occurred in decreased abundance before CD onset and are known to have anti-inflammatory effects (e.g., Streptococcus thermophilus, Faecalibacterium prausnitzii, and Clostridium clostridioforme). Additionally, we uncovered previously unreported microbes/pathways/metabolites (e.g., Porphyromonas sp., high mannose–type N-glycan biosynthesis, and serine) that point to CD-specific biomarkers. Our study establishes a road map for prospective longitudinal study designs to better understand the role of gut microbiota in disease pathogenesis and therapeutic targets to reestablish tolerance and/or prevent autoimmunity.
Background The gut microbiota plays a central role in host physiology and in several pathological mechanisms in humans. Antibiotics compromise the composition and functions of the gut microbiota inducing long-lasting detrimental effects on the host. Recent studies suggest that the efficacy of different clinical therapies depends on the action of the gut microbiota. Here, we investigated how different antibiotic treatments affect the ability of the gut microbiota to control intestinal inflammation upon fecal microbiota transplantation in an experimental colitis model and in ex vivo experiments with human intestinal biopsies. Results Murine fecal donors were pre-treated with different antibiotics, i.e., vancomycin, streptomycin, and metronidazole before FMT administration to colitic animals. The analysis of the gut microbiome, fecal metabolome, and the immunophenotyping of colonic lamina propria immune cells revealed that antibiotic pre-treatment significantly influences the capability of the microbiota to control intestinal inflammation. Streptomycin and vancomycin-treated microbiota failed to control intestinal inflammation and were characterized by the blooming of pathobionts previously associated with IBD as well as with metabolites related to the presence of oxidative stress and metabolism of simple sugars. On the contrary, the metronidazole-treated microbiota retained its ability to control inflammation co-occurring with the enrichment of Lactobacillus and of innate immune responses involving iNKT cells. Furthermore, ex vivo cultures of human intestinal lamina propria mononuclear cells and iNKT cell clones from IBD patients with vancomycin pre-treated sterile fecal water showed a Th1/Th17 skewing in CD4+ T-cell populations; metronidazole, on the other hand, induced the polarization of iNKT cells toward the production of IL10. Conclusions Diverse antibiotic regimens affect the ability of the gut microbiota to control intestinal inflammation in experimental colitis by altering the microbial community structure and microbiota-derived metabolites.
Background Celiac disease (CD) is an autoimmune digestive disorder that occurs in genetically susceptible individuals in response to ingesting gluten, a protein found in wheat, rye, and barley. Research shows that genetic predisposition and exposure to gluten are necessary but not sufficient to trigger the development of CD. This suggests that exposure to other environmental stimuli early in life, e.g., cesarean section delivery and exposure to antibiotics or formula feeding, may also play a key role in CD pathogenesis through yet unknown mechanisms. Here, we use multi-omics analysis to investigate how genetic and early environmental risk factors alter the development of the gut microbiota in infants at risk of CD. Results Toward this end, we selected 31 infants from a large-scale prospective birth cohort study of infants with a first-degree relative with CD. We then performed rigorous multivariate association, cross-sectional, and longitudinal analyses using metagenomic and metabolomic data collected at birth, 3 months and 6 months of age to explore the impact of genetic predisposition and environmental risk factors on the gut microbiota composition, function, and metabolome prior to the introduction of trigger (gluten). These analyses revealed several microbial species, functional pathways, and metabolites that are associated with each genetic and environmental risk factor or that are differentially abundant between environmentally exposed and non-exposed infants or between time points. Among our significant findings, we found that cesarean section delivery is associated with a decreased abundance of Bacteroides vulgatus and Bacteroides dorei and of folate biosynthesis pathway and with an increased abundance of hydroxyphenylacetic acid, alterations that are implicated in immune system dysfunction and inflammatory conditions. Additionally, longitudinal analysis revealed that, in infants not exposed to any environmental risk factor, the abundances of Bacteroides uniformis and of metabolite 3-3-hydroxyphenylproprionic acid increase over time, while those for lipoic acid and methane metabolism pathways decrease, patterns that are linked to beneficial immunomodulatory and anti-inflammatory effects. Conclusions Overall, our study provides unprecedented insights into major taxonomic and functional shifts in the developing gut microbiota of infants at risk of CD linking genetic and environmental risk factors to detrimental immunomodulatory and inflammatory effects.
Background One of the main challenges of microbiome analysis is its compositional nature that if ignored can lead to spurious results. Addressing the compositional structure of microbiome data is particularly critical in longitudinal studies where abundances measured at different times can correspond to different sub-compositions. Results We developed coda4microbiome, a new R package for analyzing microbiome data within the Compositional Data Analysis (CoDA) framework in both, cross-sectional and longitudinal studies. The aim of coda4microbiome is prediction, more specifically, the method is designed to identify a model (microbial signature) containing the minimum number of features with the maximum predictive power. The algorithm relies on the analysis of log-ratios between pairs of components and variable selection is addressed through penalized regression on the “all-pairs log-ratio model”, the model containing all possible pairwise log-ratios. For longitudinal data, the algorithm infers dynamic microbial signatures by performing penalized regression over the summary of the log-ratio trajectories (the area under these trajectories). In both, cross-sectional and longitudinal studies, the inferred microbial signature is expressed as the (weighted) balance between two groups of taxa, those that contribute positively to the microbial signature and those that contribute negatively. The package provides several graphical representations that facilitate the interpretation of the analysis and the identified microbial signatures. We illustrate the new method with data from a Crohn's disease study (cross-sectional data) and on the developing microbiome of infants (longitudinal data). Conclusions coda4microbiome is a new algorithm for identification of microbial signatures in both, cross-sectional and longitudinal studies. The algorithm is implemented as an R package that is available at CRAN (https://cran.r-project.org/web/packages/coda4microbiome/) and is accompanied with a vignette with a detailed description of the functions. The website of the project contains several tutorials: https://malucalle.github.io/coda4microbiome/
Background : Celiac disease (CD) is an autoimmune digestive disorder that occurs in genetically susceptible individuals in response to ingesting gluten, a protein found in wheat, rye, and barley. Research shows that genetic predisposition and exposure to gluten are necessary but not sufficient to trigger the development of CD. This suggests that exposure to other environmental stimuli early in life, e.g., cesarean section delivery, exposure to antibiotics or formula feeding, may also play a key role in CD pathogenesis through yet unknown mechanisms. Here, we use multi-omics analysis to investigate how genetic and early environmental risk factors alter the development of the gut microbiota in infants at risk of CD. Results : Toward this end, we took advantage of a large-scale prospective birth cohort study of infants with a first-degree relative with CD. We then performed rigorous multivariate association, cross-sectional and longitudinal analyses using metagenomic and metabolomic data collected at birth, three months and six months of age to explore the impact of genetic predisposition and environmental risk factors on the gut microbiota composition, function and metabolome prior to the introduction of trigger (gluten). These analyses revealed several microbial species, functional pathways and metabolites that are associated with each genetic and environmental risk factor or that are differentially abundant between environmentally exposed and non-exposed infants or between time points. Among our significant findings, we found that cesarean section delivery is associated with a decreased abundance of Bacteroides vulgatus and Bacteroides dorei and of folate biosynthesis pathway, and with an increased abundance of hydroxyphenylacetic acid, alterations that are implicated in immune system dysfunction and inflammatory conditions. Additionally, longitudinal analysis revealed that, in infants not exposed to any environmental risk factor, the abundances of Bacteroides uniforms and of metabolite 3-3-hydroxyphenylproprionic acid increase over time, while those for lipoic acid and methane metabolism pathways decrease, patterns that are linked to beneficial immunomodulatory and anti-inflammatory effects. Conclusions : Overall, our study provides unprecedented insights into major taxonomic and functional shifts in the developing gut microbiota of infants at risk of CD ultimately linking genetic and environmental risk factors to detrimental immunomodulatory and inflammatory effects. Keywords: Microbiota; Celiac disease; Multi-omics analysis, gut microbiome
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.