In everyday visual environments, objects are non-uniformly distributed across visual space. Many objects preferentially occupy particular retinotopic locations: for example, lamps more often fall into the upper visual field, whereas carpets more often fall into the lower visual field. The long-term experience with natural environments prompts the hypothesis that the visual system is tuned to such retinotopic object locations. A key prediction is that typically positioned objects should be coded more efficiently. To test this prediction, we recorded electroencephalography (EEG) while participants viewed briefly presented objects appearing in their typical locations (e.g., an airplane in the upper visual field) or in atypical locations (e.g., an airplane in the lower visual field). Multivariate pattern analysis applied to the EEG data revealed that object classification depended on positional regularities: Objects were classified more accurately when positioned typically, rather than atypically, already at 140 ms, suggesting that relatively early stages of object processing are tuned to typical retinotopic locations. Our results confirm the prediction that long-term experience with objects occurring at specific locations leads to enhanced perceptual processing when these objects appear in their typical locations. This may indicate a neural mechanism for efficient natural scene processing, where a large number of typically positioned objects needs to be processed.
In everyday visual environments, objects are non-uniformly distributed across visual space. Many objects preferentially occupy particular retinotopic locations: for example, lamps more often fall into the upper visual field, whereas carpets more often fall into the lower visual field. The long-term experience with natural environments prompts the hypothesis that the visual system is tuned to such retinotopic object locations. A key prediction is that typically positioned objects should be coded more efficiently. To test this prediction, we recorded electroencephalography (EEG) while participants viewed briefly presented objects appearing in their typical locations (e.g., an airplane in the upper visual field) or in atypical locations (e.g., an airplane in the lower visual field). Multivariate pattern analysis applied to the EEG data revealed that object classification depended on positional regularities: Objects were classified more accurately when positioned typically, rather than atypically, already at 140 ms, suggesting that relatively early stages of object processing are tuned to typical retinotopic locations. Our results confirm the prediction that long-term experience with objects occurring at specific locations leads to enhanced perceptual processing when these objects appear in their typical locations. This may indicate a neural mechanism for efficient natural scene processing, where a large number of typically positioned objects needs to be processed.
Visual categorization is a human core cognitive capacity that depends on the development of visual category representations in the infant brain. The nature of infant visual category representations and their relationship to the corresponding adult form however remain unknown. Our results clarify the nature of visual category representations in 6-to 8-month-old infants and their developmental trajectory towards adult maturity in the key characteristics temporal dynamics, representational format, and spectral properties. Temporal dynamics change from slowly emerging, developing representations in infants to quickly emerging, complex representations in adults. Despite those differences infants and adults already partly share visual category representations. The format of infants’ representations are visual features of low to intermediate complexity, whereas adults’ representations also encoded high complexity features. Theta band neural oscillations form the basis of visual category representations in infants, and these representations are shifted to the alpha/beta band in adults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.