The koala, the only extant species of the marsupial family Phascolarctidae, is classified as 'vulnerable' due to habitat loss and widespread disease. We sequenced the koala genome, producing a complete and contiguous marsupial reference genome, including centromeres. We reveal that the koala's ability to detoxify eucalypt foliage may be due to expansions within a cytochrome P450 gene family, and its ability to smell, taste and moderate ingestion of plant secondary metabolites may be due to expansions in the vomeronasal and taste receptors. We characterized novel lactation proteins that protect young in the pouch and annotated immune genes important for response to chlamydial disease. Historical demography showed a substantial population crash coincident with the decline of Australian megafauna, while contemporary populations had biogeographic boundaries and increased inbreeding in populations affected by historic translocations. We identified genetically diverse populations that require habitat corridors and instituting of translocation programs to aid the koala's survival in the wild.
Antimicrobial resistance (AMR) is a global crisis with impacts on the future health and welfare of humans and animals. Determining key factors that influence veterinarians’ antimicrobial prescribing behaviours can bridge the gap between prescribing guidelines and clinical usage. Veterinarians practicing in Australia were surveyed on their frequency in prescribing different antibiotics; factors influencing their antibiotic prescribing behaviours; and their perceptions of current drivers of AMR. Antibiotics were prescribed in a third of consultations with key differences in the frequency of use of specific antibiotics by small companion animal (SCA), equine and livestock veterinarians, which broadly aligned with antibiotic registration restrictions in Australia. SCA veterinarians reported prescribing broad-spectrum antibiotics of higher importance to human health more frequently than livestock veterinarians. Factors that were reported as ‘strong’ or ‘moderate’ barriers to appropriate antibiotic prescribing were the 1) cost of culture and susceptibility testing and 2) lack of access to rapid and affordable diagnostic tests. Fear of losing clients, colleague pressure, and lack of their own understanding about antibiotics were considered to be ‘no’ or ‘somewhat’ of a barrier to appropriate prescribing by respondents. SCA veterinarians placed greater importance on the contribution of antibiotic use in livestock to AMR, than antibiotic use in companion animals. Despite reporting use of fewer, mostly narrow spectrum antibiotics of lower importance to human and animal health, livestock veterinarians were generally more aware of their potential contribution to AMR. This study provides insights into the similarities and differences in SCA, equine and livestock veterinarians practicing in Australia and informs sector-specific strategies to improve antimicrobial stewardship.
Nine mature koalas with chlamydiosis, typically keratoconjunctivitis and/or urogenital tract infection, were treated with daily subcutaneous injections of chloramphenicol at 60 mg/kg for 45 days (five koalas), or for a shorter duration (four koalas). All koalas were initially positive for Chlamydia pecorum as determined by real-time polymerase chain reaction (qPCR). Plasma chloramphenicol concentrations were determined at t = 0, 1, 2, 4, 8, and 24 h after the day 1 injection (nine koalas) and after the day 15 injection (seven koalas). Chloramphenicol reached a median (and range) maximum plasma concentration of 3.03 (1.32-5.03 μg/mL) at 4 (1-8 h) after the day 1 injection and 4.82 (1.97-27.55 μg/mL) at 1 (1-2 h) after day 15. The median (and range) of AUC(0-24) on day 1 and day 15 were 48.14 (22.37-81.14 μg·h/mL) and 50.83 (28.43-123.99 μg·h/mL), respectively. The area under the moment curve (AUMC)(0-24) median (and range) for day 1 and day 15 were 530.03 (233.05-798.97 h) and 458.15 (291.72-1093.58 h), respectively. Swabs were positive for chlamydial DNA pretreatment, and all koalas except one, produced swabs negative for chlamydial DNA during treatment and which remained so, for 2-63 days after treatment, however whether chloramphenicol treatment prevented long-term recrudescence of infection was not established. At this dose and dosing frequency, chloramphenicol appeared to control mild chlamydial infection and prevent shedding, but severe urogenital disease did not appear to respond to chloramphenicol at this dosage regime. For koalas affected by severe chlamydiosis, antibiotics alone are not sufficient to effect a cure, possibly because of structural or metabolic changes associated with chronic disease and inflammation.
Koalas (n = 43) were treated daily for up to 8 weeks with enrofloxacin: 10 mg/kg subcutaneously (s.c.), 5 mg/kg s.c., or 20 mg/kg per os (p.o.); or marbofloxacin: 1.0-3.3 mg/kg p.o., 10 mg/kg p.o. or 5 mg/kg s.c. Serial plasma drug concentrations were determined on day 1 and again at approximately 2 weeks, by liquid chromatography. The median (range) plasma maximum concentrations (C(max) ) for enrofloxacin 5 mg/kg s.c. and 10 mg/kg s.c. were 0.83 (0.68-1.52) and 2.08 (1.34-2.96) μg/mL and the median (range) T(max) were 1.5 h (1-2) and 1 h (1-2) respectively. Plasma concentrations of orally dosed marbofloxacin were too low to be quantified. Oral administration of enrofloxacin suggested absorption rate limited disposition pharmacokinetics; the median (range) C(max) for enrofloxacin 20 mg/kg p.o. was 0.94 (0.76-1.0) μg/mL and the median (range) T(max) was 4 h (2-8). Oral absorption of both drugs was poor. Plasma protein binding for enrofloxacin was 55.4 ± 1.9% and marbofloxacin 49.5 ± 5.3%. Elevations in creatinine kinase activity were associated with drug injections. Enrofloxacin and marbofloxacin administered at these dosage and routes are unlikely to inhibit the growth of chlamydial pathogens in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.