Paleotropical clades with largely disjunct distributions are ideal models for biogeographic reconstructions. The dung beetle genera Grebennikovius Mlambo, Scholtz & Deschodt, Epactoides Olsouffief and Ochicanthon Vaz-de-Mello are distributed in Tanzania, Madagascar and Réunion, and the Oriental region, respectively. We combine morphology and molecular dataset to reconstruct the phylogenetic relationships between these taxa. Our analyses corroborate previous hypotheses of monophyly of the group, which is here described as new tribe Epactoidini trib. nov. Grebennikovius is recovered as sister to Epactoides, while Ochicanthon emerges as sister to them both. The disjunct distribution of our focal clade is unusual within the subfamily Scarabaeinae. Bayesian divergence time estimates and ancestral range reconstructions indicate an African origin of the crown group of the tribe Epactoidini trib. nov. in the early mid Eocene, ca. 46 Ma. The divergence between Epactoides and its sister is dated to 32.3 Ma, while the crown age for the genus Ochicanthon is dated to 27 Ma. We investigate the factors that may have shaped the current distribution of the tribe Epactoidini trib. nov. The formation of the Gomphotherium landbridge, along with favourable environmental conditions would have allowed dry-intolerant organisms, such as Ochicanthon, to disperse out of Africa. Remarkable climatic stability of the Eastern Arc Mountains was critical for the retention of the monotypic genus Grebennikovius. We suggest two subsequent overwater dispersal events: the migration of the most recent common ancestor (MRCA) of Epactoides from Africa to Madagascar (32.3-29.5 Ma); the lately dispersal of the MRCA of the today's extinct Epactoides giganteus Rossini, Vaz-de-Mello & Montreuil to Réunion island from Madagascar (3.4 Ma). We suggest that the high potential of dispersal of Epactoidini trib. nov. dung beetles and the strict association to forest habitat might have triggered two major radiations, one in Madagascar and one in the Oriental Region.
The exponential growth that has characterised human societies since the industrial revolution has fundamentally modified our surroundings. Examples include rapid increases in agricultural fields, now accounting for 37% of the land surface, as well as increases in urban areas, projected to triple worldwide by 2030. As such, understanding how species have adapted to and will respond to increasing human pressures is of key importance. Resilience, the ability of an ecological system to resist, recover, and even benefit from disturbances, is a key concept in this regard. Here, using a recently develop comparative demographic framework, we examine how the inherent ability of 921 natural populations of 279 plants and 45 animal species worldwide to respond to disturbances correlates with human settlement size and human activities. We develop a spatially and phylogenetically explicit model parameterised with life history traits and metrics of demographic resilience using the open-access COMPADRE and COMADRE databases, coupled with high-resolution human impact information via the Human Footprint database. We expected: (H1) populations located nearer urban areas to have a greater ability to resist, recover, or benefit from human-related disturbances compared to pristine habitats; (H2) human effects on the responses of animal populations to disturbances to depend on the ability for long-distance mobility; and (H3): human pressures to constrain the repertoire of life history strategies of animal and plant species via their effects on underlying vital rates and life history traits. We find that: (1) urban areas host a limited diversity of strategies that achieve demographic resilience with, on average, more resistant and faster-recovery populations located near human activities than in pristine habitats; (2) species with limited mobility tend to be more strongly affected by human activities than those with long-distance mobility; and (3) human pressures correlate with a limited set of vital rates and life history traits, including the ability to shrink, and reproduce earlier. Our results provide a tangible picture of how, having drastically transformed terrestrial landscapes, humans have shaped the ways animals and plants respond to disturbances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.