Mobile edge computing (MEC) is introduced as part of edge computing paradigm, that exploit cloud computing resources, at a nearer premises to service users. Cloud service users often search for cloud service providers to meet their computational demands. Due to the lack of previous experience between cloud service providers and users, users hold several doubts related to their data security and privacy, job completion and processing performance efficiency of service providers. This paper presents an integrated three-tier trust management framework that evaluates cloud service providers in three main domains: Tier I, which evaluates service provider compliance to the agreed upon service level agreement; Tier II, which computes the processing performance of a service provider based on its number of successful processes; and Tier III, which measures the violations committed by a service provider, per computational interval, during its processing in the MEC network. The three-tier evaluation is performed during Phase I computation. In Phase II, a service provider total trust value and status are gained through the integration of the three tiers using the developed overall trust fuzzy inference system (FIS). The simulation results of Phase I show the service provider trust value in terms of service level agreement compliance, processing performance and measurement of violations independently. This disseminates service provider’s points of failure, which enables a service provider to enhance its future performance for the evaluated domains. The Phase II results show the overall trust value and status per service provider after integrating the three tiers using overall trust FIS. The proposed model is distinguished among other models by evaluating different parameters for a service provider.
Mobile edge computing (MEC) is a new computing paradigm that brings cloud services to the network edge. Despite its great need in terms of computational services in daily life, service users may have several concerns while selecting a suitable service provider to fulfil their computational requirements. Such concerns are: with whom they are dealing with, where will their private data migrate to, service provider processing performance quality. Therefore, this paper presents a trust evaluation scheme that evaluates the processing performance of a service provider in the MEC environment. Processing performance of service providers is evaluated in terms of average processing success rate and processing throughput, thus allocating a service provider in a relevant trust status. Service provider processing incompliance and user termination ratio are also computed during provider’s interactions with users. This is in an attempt to help future service users to be acknowledged of service provider’s past interactions prior dealing with it. Thus, eliminating the probability of existing compromised service providers and raising the security and success of future interactions between service providers and users. Simulations results show service providers processing performance degree, processing incompliance and user termination ratio. A service provider is allocated to a trust status according to the evaluated processing performance trust degree.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.