Accurate crop yield estimates are important for governments, farmers, scientists and agribusiness. This paper provides a novel demonstration of the use of freely available Sentinel-2 data to estimate withinfield wheat yield variability in a single year. The impact of data resolution and availability on yield estimation is explored using different combinations of input data. This was achieved by combining Sentinel-2 with environmental data (e.g. meteorological, topographical, soil moisture) for different periods throughout the growing season. Yield was estimated using Random Forest (RF) regression models. They were trained and validated using a dataset containing over 8000 points collected by combine harvester yield monitors from 39 wheat fields in the UK. The results demonstrate that it is possible to produce accurate maps of within-field yield variation at 10m resolution using Sentinel-2 data (RMSE 0.66 tonnes/ha). When combined with environmental data further improvements in accuracy can be obtained (RMSE 0.61 tonnes/ha). We demonstrate that with knowledge of crop-type distribution it is possible to use these models, trained with data from a few fields, to estimate within-field yield variability on a landscape scale. Applying this method gives us a range of crop yield across the landscape of 4.09 to 12.22 tonnes/ha, with a total crop production of approx. 289000 tonnes.
Birds are useful indicators of overall biodiversity, which continues to decline globally, despite targets to reduce its loss. The aim of this paper is to understand the importance of different spatial drivers for modelling bird distributions. Specifically, it assesses the importance of satellite‐derived measures of habitat productivity, heterogeneity and landscape structure for modelling bird diversity across Great Britain. Random forest (RF) regression is used to assess the extent to which a combination of satellite‐derived covariates explain woodland and farmland bird diversity and richness. Feature contribution analysis is then applied to assess the relationships between the response variable and the covariates in the final RF models. We show that much of the variation in farmland and woodland bird distributions is explained (R2 0.64–0.77) using monthly habitat‐specific productivity values and landscape structure (FRAGSTATS) metrics. The analysis highlights important spatial drivers of bird species richness and diversity, including high productivity grassland during spring for farmland birds and woodland patch edge length for woodland birds. The feature contribution provides insight into the form of the relationship between the spatial drivers and bird richness and diversity, including when a particular spatial driver affects bird richness positively or negatively. For example, for woodland bird diversity, the May 80th percentile Normalized Difference Vegetation Index (NDVI) for broadleaved woodland has a strong positive effect on bird richness when NDVI is >0.7 and a strong negative effect below. If relationships such as these are stable over time, they offer a useful analytical tool for understanding and comparing the influence of different spatial drivers.
Sustainable intensification (SI) has been proposed as a possible solution to the conflicting problems of meeting projected increase in food demand and preserving environmental quality. SI would provide necessary production increases while simultaneously reducing or eliminating environmental degradation, without taking land from competing demands. An important component of achieving these aims is the development of suitable methods for assessing the temporal variability of both the intensification and sustainability of agriculture. Current assessments rely on traditional data collection methods that produce data of limited spatial and temporal resolution. Earth Observation (EO) provides a readily accessible, long-term dataset with global coverage at various spatial and temporal resolutions. In this paper we demonstrate how EO could significantly contribute to SI assessments, providing opportunities to quantify agricultural intensity and environmental sustainability. We review an extensive body of research on EO-based methods to assess multiple indicators of both agricultural intensity and environmental sustainability. To date these techniques have not been combined to assess SI; here we identify the opportunities and initial steps required to achieve this. In this context, we propose a development of a set of essential sustainable intensification variables (ESIVs) that could be derived from EO data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.