In this work, we propose a novel method to find temporal properties that lead to the unexpected behaviors from labeled dataset. We express these properties in past time Signal Temporal Logic (ptSTL). First, we present a novel approach for finding parameters of a template ptSTL formula, which extends the results on monotonicity based parameter synthesis. The proposed method optimizes a given monotone criteria while bounding an error. Then, we employ the parameter synthesis method in an iterative unguided formula synthesis framework. In particular, we combine optimized formulas iteratively to describe the causes of the labeled events while bounding the error. We illustrate the proposed framework on two examples.
We present an automated system repair framework for cyber-physical systems. The proposed framework consists of three main steps: (1) system simulation and fault detection to generate a labeled dataset, (2) identification of the repairable temporal properties leading to the faulty behavior and (3) repairing the system to avoid the occurrence of the cause identified in the second step. We express the cause as a past time signal temporal logic (ptSTL) formula and present an efficient monotonicity-based method to synthesize a ptSTL formula from a labeled dataset. Then, in the third step, we modify the faulty system by removing all behaviors that satisfy the ptSTL formula representing the cause of the fault. We apply the framework to two rich modeling formalisms: discrete-time dynamical systems and timed automata. For both of them, we define repairable formulae, the corresponding repair procedures, and illustrate them over case studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.