Background Owing to the nature of health data, their sharing and reuse for research are limited by legal, technical, and ethical implications. In this sense, to address that challenge and facilitate and promote the discovery of scientific knowledge, the Findable, Accessible, Interoperable, and Reusable (FAIR) principles help organizations to share research data in a secure, appropriate, and useful way for other researchers. Objective The objective of this study was the FAIRification of existing health research data sets and applying a federated machine learning architecture on top of the FAIRified data sets of different health research performing organizations. The entire FAIR4Health solution was validated through the assessment of a federated model for real-time prediction of 30-day readmission risk in patients with chronic obstructive pulmonary disease (COPD). Methods The application of the FAIR principles on health research data sets in 3 different health care settings enabled a retrospective multicenter study for the development of specific federated machine learning models for the early prediction of 30-day readmission risk in patients with COPD. This predictive model was generated upon the FAIR4Health platform. Finally, an observational prospective study with 30 days follow-up was conducted in 2 health care centers from different countries. The same inclusion and exclusion criteria were used in both retrospective and prospective studies. Results Clinical validation was demonstrated through the implementation of federated machine learning models on top of the FAIRified data sets from different health research performing organizations. The federated model for predicting the 30-day hospital readmission risk was trained using retrospective data from 4.944 patients with COPD. The assessment of the predictive model was performed using the data of 100 recruited (22 from Spain and 78 from Serbia) out of 2070 observed (records viewed) patients during the observational prospective study, which was executed from April 2021 to September 2021. Significant accuracy (0.98) and precision (0.25) of the predictive model generated upon the FAIR4Health platform were observed. Therefore, the generated prediction of 30-day readmission risk was confirmed in 87% (87/100) of cases. Conclusions Implementing a FAIR data policy in health research performing organizations to facilitate data sharing and reuse is relevant and needed, following the discovery, access, integration, and analysis of health research data. The FAIR4Health project proposes a technological solution in the health domain to facilitate alignment with the FAIR principles.
The current availability of electronic health records represents an excellent research opportunity on multimorbidity, one of the most relevant public health problems nowadays. However, it also poses a methodological challenge due to the current lack of tools to access, harmonize and reuse research datasets. In FAIR4Health, a European Horizon 2020 project, a workflow to implement the FAIR (findability, accessibility, interoperability and reusability) principles on health datasets was developed, as well as two tools aimed at facilitating the transformation of raw datasets into FAIR ones and the preservation of data privacy. As part of this project, we conducted a multicentric retrospective observational study to apply the aforementioned FAIR implementation workflow and tools to five European health datasets for research on multimorbidity. We applied a federated frequent pattern growth association algorithm to identify the most frequent combinations of chronic diseases and their association with mortality risk. We identified several multimorbidity patterns clinically plausible and consistent with the bibliography, some of which were strongly associated with mortality. Our results show the usefulness of the solution developed in FAIR4Health to overcome the difficulties in data management and highlight the importance of implementing a FAIR data policy to accelerate responsible health research.
The aim of this study is to build an evaluation framework for the user-centric testing of the Data Curation Tool. The tool was developed in the scope of the FAIR4Health project to make health data FAIR by transforming them from legacy formats into a Common Data Model based on HL7 FHIR. The end user evaluation framework was built by following a methodology inspired from the Delphi method. We applied a series of questionnaires to a group of experts not only in different roles and skills, but also from various parts of Europe. Overall, 26 questions were formulated for 16 participants. The results showed that the users are satisfied with the capabilities and performance of the tool. The feedbacks were considered as recommendations for technical improvement and fed back into the software development cycle of the Data Curation Tool.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.