Flow through a pipeline-cavity system can give rise to pronounced ff ow tones, even when the inflow boundary layer is fully turbulent. Such tones arise from the coupling between the inherent instability of the shear flow past the cavity and a resonant acoustic mode of the system. A technique of high-image-density particle image velocimetry is employed in conjunction with a special test section, which allows effective laser illumination and digital acquisition of patterns of particle images. This approach leads to patterns of velocity, vorticity, streamline topology and hydrodynamic contributions to the acoustic power integral. Comparison of global, instantaneous images with time-and phaseaveraged representations provides insight into the small-scale and large-scale concentrations of vorticity, and their consequences on the topological features of Streamline patterns, as well as the streamwise and transverse projections of the hydrodynamic contribution to the acoustic power integral. Furthermore, these global approaches allow the definition of effective wavelengths and phase speeds of the vortical structures, which can lead to guidance for physical models of the dimensionless frequency of oscillation.
Flow through a pipeline-cavity system can give rise to pronounced ff ow tones, even when the inflow boundary layer is fully turbulent. Such tones arise from the coupling between the inherent instability of the shear flow past the cavity and a resonant acoustic mode of the system. A technique of high-image-density particle image velocimetry is employed in conjunction with a special test section, which allows effective laser illumination and digital acquisition of patterns of particle images. This approach leads to patterns of velocity, vorticity, streamline topology and hydrodynamic contributions to the acoustic power integral. Comparison of global, instantaneous images with time-and phaseaveraged representations provides insight into the small-scale and large-scale concentrations of vorticity, and their consequences on the topological features of Streamline patterns, as well as the streamwise and transverse projections of the hydrodynamic contribution to the acoustic power integral. Furthermore, these global approaches allow the definition of effective wavelengths and phase speeds of the vortical structures, which can lead to guidance for physical models of the dimensionless frequency of oscillation.
Flow-acoustic interactions due to fully turbulent inflow past a shallow axisymmetric cavity mounted in a pipe, which give rise to flow tones, are investigated using a technique of high-image-density particle image velocimetry in conjunction with unsteady pressure measurements. This imaging leads to patterns of velocity, vorticity, streamline topology, and hydrodynamic contributions to the acoustic power integral. Global instantaneous images, as well as time-averaged images, are evaluated to provide insight into the flow physics during tone generation. Emphasis is on the manner in which the streamwise length scale of the cavity alters the major features of the flow structure.These image-based approaches allow identification of regions of the unsteady shear layer that contribute to the instantaneous hydrodynamic component of the acoustic power, which is necessary to maintain a flow tone. In addition, combined image analysis and pressure measurements allow categorization of the instantaneous flow patterns that are associated with t ypes of time traces and spectra of the fluctuating pressure. In contrast to consideration based solely on pressure spectra, it is demonstrated that lockedon tones may actually exhibit intermittent, non-phase-locked images, apparently due to low damping of the acoustic resonator. Locked-on flow tones (without modulation or intermittency), locked-on flow tones with modulation, and non-locked-on oscillations with short-term, highly coherent fluctuations are defined and represented by selected cases. Depend ing on which of these regimes occur, the time-averaged Q (quality) -factor and the dimensionless peak pressure are substantially altered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.