The current study aimed to isolate and characterize a chromate-resistant bacterium from tannery effluent, able to reduce Cr(VI) aerobically at high pH and salinity. Environmental contamination by hexavalent chromium, Cr(VI), presents a serious public health problem. Enrichment led to the isolation of 12 bacteria displaying different degrees of chromate reduction. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparison indicated that the most potent strain belonged to the genus Halomonas. The new strain designated as Halomonas sp. M-Cr was able to reduce 82% of 50 mg L−1 Cr(VI) in 48 h, concomitant with discolouring of yellow colour of the medium and formation of white insoluble precipitate of Cr(III). It exhibited growth up to 3500 mg L−1 Cr(VI), 20% NaCl and showed strong Cr(VI) reduction under alkaline condition, pH 10. Scanning electron microscopy revealed precipitation of chromium hydroxide on bacterial cell surfaces, which showed characteristic peak of chromium in energy-dispersive X-ray analysis. Plackett–Burman design was used to evaluate the influence of related parameters for enhancing Cr(VI) reduction. Glucose, yeast extract and KH2PO4 were confirmed as significant variables in the medium. Data suggest Halomonas sp. M-Cr as a promising candidate for bioremediation of Cr(VI) contaminated effluents particularly in saline and alkaline environments. Up to our knowledge, this is the first report on isolation of haloalkaliphilic Halomonas sp. from tannery effluent.
Microbial exopolysaccharides (EPS) provide a broad range of applications. Thus, there is an increasing interest in the production, characterization, and use of EPS derived from various microorganisms. Extremophile polysaccharides have unique properties and applications due to its unique structures. The importance of exopolysaccharides synthesized by a new bacterial strain, Alkalibacillus sp. w3, was highlighted in this study. Alkalibacillus sp. w3, a haloalkalitolerant firmicute that was recovered from a salt lake, was optimized for EPS production, and its biological activities were studied. Exopolysaccharide synthesis was observed in Horikoshi I broth medium. The optimal culture conditions for achieving the highest exopolysaccharide production were a 7-day incubation period, pH 10, and 250 g/L of NaCl. The most effective carbon and nitrogen sources for EPS production were glucose and a combination of yeast extract and peptone. Additionally, Plackett-statistical Burman’s design showed that all factors tested had a favorable impact, with glucose having the greatest significance on the production of EPS. The model’s best predictions for culture conditions resulted in a two-fold improvement in EPS production compared to the original yield before optimization. The recovered EPS contained 65.13% carbohydrates, 30.89% proteins, and 3.98% lipids. Moreover, EPS produced by Alkalibacillus sp. w3 demonstrated anticancer activity against hepatocellular carcinoma (HepG2) and human colon carcinoma (HCT-116) cell lines, with IC50 values as low as 11.8 and 15.5 µg/mL, respectively, besides antibacterial activity against various Gram-positive, Gram-negative bacteria, and yeast. Based on these results, EPS made by Alkalibacillus sp. w3 has many useful properties, which make it suitable for use in the medical field.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.