<span>Although melanoma is not the most common type of skin cancer, it is supposed to extend to other areas of the body if not early diagnosed. Melanoma is the deadliest form of skin cancer and accounts for about 75% of deaths associated with skin cancer. The present study introduces an automated technique for skin cancer prediction, detection, and diagnosis including trending noninvasive and nonionizing techniques that combines deep learning methods to diagnose melanoma with high accuracy. Computer-aided diagnosis (CAD) using medical images is utilized to distinguish benign and malignant tumors, which can assist physicians in early identification of symptoms, thus lowering the mortality rate. The CAD system consists of four phases; detection of the region of interest (RoI), using data augmentation techniques, processing RoI using convolutional neural network (CNN) to extract the most important features, and finally the extracted CNN features are input to a support vector machine (SVM) classifier to decode the two classes benign (B) and malignant (M). Two datasets, ISIC and CPTAC-CM, were utilized to train the CNNs. GoogleNet, ResNet-50, AlexNet, and VGG19 were investigated and compared. The accuracy of the proposed CAD system has reached 99.8% for ISIC database and 99.9% for CPTAC-CM database.</span>
The present study aims at preventing spread out of COVID-19 by early detection of infected cases using chest X-ray images and convolutional neural networks. Covid-19 chest X-ray dataset were collected from public sources as well as through agreements with hospitals and physicians with the consent of their patients. A deep learning algorithm based on convolutional neural networks (CNN) was implemented utilizing X-ray images to diagnose COVID-19. ResNet50, short for Residual Networks, is a classic neural network that was used as a backbone for the classification task. It accelerates the speed of training of the deep networks and reduces the effect of vanishing gradient problems. Images were first resized and then pre-processed
A pipelined framework is proposed for accurate, automated, simultaneous segmentation of the liver as well as the hepatic tumors from computed tomography (CT) images. The introduced framework composed of three pipelined levels. First, two different transfers deep convolutional neural networks (CNN) are applied to get high-level compact features of CT images. Second, a pixel-wise classifier is used to obtain two output-classified maps for each CNN model. Finally, a fusion neural network (FNN) is used to integrate the two maps. Experimentations performed on the MICCAI’2017 database of the liver tumor segmentation (LITS) challenge, result in a dice similarity coefficient (DSC) of 93.5% for the segmentation of the liver and of 74.40% for the segmentation of the lesion, using a 5-fold cross-validation scheme. Comparative results with the state-of-the-art techniques on the same data show the competing performance of the proposed framework for simultaneous liver and tumor segmentation.
Biological pairwise sequence alignment can be used as a method for arranging two biological sequence characters to identify regions of similarity. This operation has elicited considerable interest due to its significant influence on various critical aspects of life (e.g., identifying mutations in coronaviruses). Sequence alignment over large databases cannot yield results within a reasonable time, power, and cost. heuristic methods, such as FASTA, the BLAST family have been demonstrated to perform 40 times faster than DP-based (e.g., Needleman-Wunsch) techniques they cannot guarantee an optimum alignment result An optimized software platform of a widely used DNA sequence alignment algorithm called the Needleman-Wunsch (NW) algorithm based on a lookup table, is described in this study. This global alignment algorithm is the best approach for identifying similar regions between sequences. This study presents a new application of classical machine learning (ML) to global sequence alignment. Customized ML models are used to implement NW global alignment. An accuracy of 99.7% is achieved when using a multilayer perceptron with the ADAM optimizer, and up to 2912 Giga cell updates per second are realized on two real DNA sequences with a length of 4.1 M nucleotides. Our implementation is valid for RNA/DNA sequences. This study aims to parallelize the computation steps involved in the algorithm to accelerate its performance by using ML algorithms. All datasets used in this study are available from https://ieeedataport.org/documents/dna-sequence-alignment-datasets-based-nw-algorithm. INDEX TERMSBioinformatics, DNA, RNA, Pairwise sequence alignment (PWSA), Needleman-Wunsch (NW) algorithm, Machine learning (ML) algorithms, Multilayer perceptron (MLP), XGBoost algorithm. CONTRIBUTION:This study presented six DNA/RNA sequence alignment datasets for one of the most common alignment algorithms, namely, the Needleman-Wunsch (NW) algorithm. It proposed a fast and parallel implementation of the NW algorithm by using machine learning techniques. This research is an extension and improved version of our previous work [1]. The current implementation achieved 99.7% accuracy by using a multilayer perceptron with the ADAM optimizer and up to 2912 Giga cell updates per second on two real DNA sequences with an of length 4.1 M nucleotides. Our implementation is valid for extremely long sequences by using the divide-and-conquer strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.