Treatment of produced water in oil fields has become a tough challenge for oil producers. Nanofiltration, a promising method for water treatment, has been proposed as a solution. The phase inversion technique was used for the synthesis of nanofiltration membranes of polyethersulfone embedded with graphene oxide nanoparticles and polyethersulfone embedded with titanium nanoribbons. As a realistic situation, water samples taken from the oil field were filtered using synthetic membranes at an operating pressure of 0.3 MPa. Physiochemical properties such as water flux, membrane morphology, flux recovery ratio, pore size and hydrophilicity were investigated. Additionally, filtration efficiency for removal of constituent ions, oil traces in water removal, and fouling tendency were evaluated. The constituent ions of produced water act as the scaling agent which threatens the blocking of the reservoir bores of the disposal wells. Adding graphene oxide (GO) and titanium nanoribbons (TNR) to polyethersulfone (PES) enhanced filtration efficiency, water flux, and anti-fouling properties while also boosting hydrophilicity and porosity. The PES-0.7GO membrane has the best filtering performance, followed by the PES-0.7TNR and pure-PES membranes, with chloride salt rejection rates of 81%, 78%, and 35%; oil rejection rates of 88%, 85%, and 71%; and water fluxes of 85, 82, and 42.5 kg/m2 h, respectively. Because of its higher hydrophilicity and physicochemical qualities, the PES-0.7GO membrane outperformed the PES-0.7TNR membrane. Nanofiltration membranes embedded with nanomaterial described in this work revealed encouraging long-term performance for oil-in-water trace separation and scaling agent removal.
Optimized FO membrane showed water flux 8.5 times that of commercial CTA membrane, salt rejection of 99.2%, and the lowest reported specific reverse solute flux (0.00026 g L−1).
Water treatment is regarded as one of the essential elements of sustainability. To lower the cost of treatment, the wastewater volume is reduced via the osmotic process. Here, mixed-matrix woven forward osmosis (MMWFO) PES membranes modified by a TiO2/Na2Ti3O7 (TNT) nanocomposite were fabricated for treating water from different sources. Various techniques were used to characterize the TNT nanocomposite. The crystal structure of TNT is a mix of monoclinic Na2Ti3O7 and anorthic TiO2 with a preferred orientation of (2−11). The SEM image shows that the surface morphology of the TNT nanocomposite is a forked nano-fur with varying sizes regularly distributed throughout the sample. The impact of TNT wt.% on membrane surface morphologies, functional groups, hydrophilicity, and performance was investigated. Additionally, using distilled water (DW) as the feed solution (FS), the effects of various NaCl concentrations, draw solutions, and membrane orientations on the performance of the mixed-matrix membranes were tested. Different water samples obtained from various sources were treated as the FS using the optimized PES/TNT (0.01 wt.%) MMWFO membrane. Using textile effluent as the FS, the impact of various NaCl DS concentrations on the permeated water volume was investigated. The results show that the MMWFO membrane generated with the TNT nanocomposite at a 0.01 wt.% ratio performed better in FO mode. After 30 min of use with 1 M NaCl and various sources of water as the FS, the optimized MMWFO membrane provided a steady water flow and exhibited antifouling behavior. DW performed better than other water types whenever it was used owing to its greater flow (136 LMH) and volume reduction (52%). Tap water (TW), textile industrial wastewater (TIWW), gray water (GW), and municipal wastewater (MW) showed volume reductions of 41%, 34%, 33%, and 31.9%, respectively. Additionally, when utilizing NaCl as the DS and TIWW as the FS, 1 M NaCl resulted in more permeated water than 0.25 M and 0.5 M, yet a higher volume reduction of 41% was obtained.
We introduced, for the first time, a membrane composed of nanostructured self-polyether sulphone (PES) filled with graphene oxide (GO) applied to photoelectrochemical (PEC) water splitting. This membrane was fabricated through the phase inversion method. A variety of characteristics analysis of GO and its composite with PES including FTIR, XRD, SEM, and optical properties was studied. Its morphology was completely modified from macro voids for bare PES into uniform layers with a random distribution of GO structure which facilitated the movement of electrons between these layers for hydrogen production. The composite membrane photocathode brought a distinct photocurrent generation (5.7 mA/cm2 at 1.6 V vs. RHE). The optimized GO ratio in the membrane was investigated to be PG2 (0.008 wt.% GO). The conversion efficiencies of PEC were assessed for this membrane. Its incident photon-to-current efficiency (IPCE) was calculated to be 14.4% at λ = 390 nm beside the applied bias photon-to-current conversion efficiency (ABPE) that was estimated to be 7.1% at −0.4 V vs. RHE. The stability of the PG2 membrane after six cycles was attributed to high thermal and mechanical stability and excellent ionic conductivity. The number of hydrogen moles was calculated quantitively to be 0.7 mmol h−1 cm−2. Finally, we designed an effective cost membrane with high performance for hydrogen generation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.