In this research, different ductile irons and austempered ductile irons were successfully developed using several alloying contents of nickel, copper and microalloying with niobium. Additionally, special nanocarbon powder was added to the molten iron to enhance the nucleation tendency of spheroidal graphite and compensate for the possible negative effect of Nb addition on the nodule morphology. Metallographic analysis showed that increasing the niobium content in the alloy to 0.1 wt % raises the number of graphite eutectic cells and refines the final structure of the graphite. Moreover, the nodule count of graphite slightly increased, but it concurrently decreased the nodularity when the Nb amount reached 0.1 wt %. SEM micrographs illustrated that nano- to microsized niobium carbides (NbC) particles were dispersed in the matrix of the Nb microalloyed ductile irons. Both optical and SEM micrographs clearly showed that alloying of ductile irons with nickel, copper and microalloying with niobium had a significant effect on defining the final pearlite structure. Coarse, fine, broken and spheroidized pearlite structures were simultaneously observed in all investigated alloys. Dilatometry studies demonstrated that the nano NbC particles acted as nucleation sites for graphite and ferrite needles. Therefore, Nb addition accelerated the formation of ausferrite during the austempering stage. Finally, alloying with Cu, Ni and microalloying with Nb led to developing novel grades of ADI with excellent strength/ductility property combination.
Abstract. This work is designed to better understand the influence of cooling rate on the nature and morphology of intercellular precipitates in Silicon-Molybdenum ferritic ductile iron (SiMo). Plates of 3, 6, 9 mm thickness were cast in greensand and investment casting molds to give a wide spectrum of cooling rates. It was found that at higher cooling rates, the intercellular regions have a lamellar structure typical of pearlite. With decreasing cooling rates, the precipitate contains complex (Fe-Mo-Si) carbides of fine spheroidal or rod-like structure surrounding the eutectic carbides.Intensive Scanning Electron Microscopy with Energy Dispersive Spectroscopy (SEM/EDS) and Optical Microscopy (OM) investigations showed that the eutectic carbides are mainly (Fe, Mo, Si) C containing up to 48% Mo, whereas the fine precipitates contain lower Mo-contents. Both carbide types did not show to have a strict stoichometric composition. The solidification and solid-state transformation path was determined using both phase diagram calculated from Thermo-Calc software as well as Differential Scanning Calorimetry (DSC).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.